
Oracle® Banking Platform
Host Extensibility Guide
Release 2.6.2.0.0
E95189-01

May 2018

Oracle Banking PlatformHost ExtensibilityGuide, Release 2.6.2.0.0

E95189-01

Copyright © 2011, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictionson use
and disclosure and are protected by intellectual property laws. Except asexpressly permitted in your license
agreement or allowed by law, youmaynot use, copy, reproduce, translate, broadcast, modify, license, transmit,
distribute, exhibit, perform, publish or display anypart, in any form, or byanymeans. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find anyerrors, please report them to us in writing.

U.S. GOVERNMENT END USERS: Oracle programs, including anyoperating system, integrated software, any
programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable FederalAcquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including anyoperating system, integrated software, anyprograms installed on the hardware, and/or
documentation, shall be subject to license termsand license restrictionsapplicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of informationmanagement applications. It is
not developed or intended for use in any inherently dangerousapplications, including applications that maycreate
a risk of personal injury. If you use this software or hardware in dangerousapplications, then you shall be
responsible to take all appropriate failsafe, backup, redundancy, and other measures to ensure its safe use.
Oracle Corporation and its affiliates disclaim any liability for anydamagescaused byuse of this software or
hardware in dangerousapplications.

Oracle and Java are registered trademarksof Oracle and/or its affiliates. Other namesmaybe trademarksof their
respective owners.

This software or hardware and documentationmayprovide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its
affiliateswill not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services.

Contents

Preface 30

Audience 30

Documentation Accessibility 30

Related Documents 30

Conventions 30

1 About This Guide 33

1.1 Sections Not Applicable for Oracle Banking Enterprise Product Man-
ufacturing 33

1.2 Sections Applicable Only for Oracle Banking Enterprise Collections 33

2 Objective and Scope 35

2.1 Overview 35

2.2 Objective and Scope 35

2.2.1 Extensibility Objective 35

2.2.2 Document Scope 35

2.3 Complementary Artefacts 36

2.4 Out of Scope 37

3 Overview of Use Cases 39

3.1 Extensibility Use Cases 39

3.1.1 Extending Service Execution 39

3.1.2 OBP Application Adapters 40

3.1.3 Extending Business Policy 40

3.1.4 User Defined Fields 41

3.1.5 Batch Framework Extension 41

3.1.6 Uploaded File Processing 42

3

3.1.7 Alert Extension 43

3.1.8 Create New Reports 44

3.1.9 Security Customization 45

3.1.10 Loan Schedule Computation Algorithm 47

3.1.11 Facts and Business Rules 47

3.1.12 Composite Application Service 48

3.1.13 ID Generation 49

3.1.14 OCH Integration 49

4 Extending Service Executions 51

4.1 Service Extension – Extending the "app" Layer 51

4.1.1 Application Service Extension Interface 52

4.1.2 Default Application Service Extension 53

4.1.3 Application Service Extension Executor 54

4.1.4 Extension Configuration 56

4.1.5 Application Service Extension Using Groovy 57

4.2 Extended Application Service Extension – Extending the "appx" Layer 59

4.2.1 Extended Application Service Extension Interface 60

4.2.2 Default Implementation of Appx Extension 61

4.2.3 Configuration 62

4.2.4 Extended Application Service Extension Executor 63

4.2.5 Application Service "appx" Extension using Groovy 65

4.3 End-to-End Example of an Extension 67

4.4 Support for Middleware Specific Tasks and Application service 71

4.4.1 Pre and Post Middleware Specific Transaction Tasks Overview 71

4.4.2 Sample Configuration 72

4

4.4.3 Custom Application Service 75

5 OBP Proxy Extension 77

6 OBP Application Adapters 81

6.1 Adapter Implementation Architecture 81

6.1.1 Package Diagram 81

6.1.2 Adapter Mechanism Class Diagram 83

6.1.3 Adapter Mechanism Sequence Diagram 83

6.2 Examples of Adapter Implementation 84

6.2.1 Example 1 – EventProcessingAdapter 84

6.2.2 Example 2 – DispatchAdapter 86

6.2.3 Example 3 - Adapter Implementation Using Groovy 87

6.3 Customizing Existing Adapters 89

6.3.1 Custom Adapter Example 1 – DispatchAdapter 89

6.3.2 Custom Adapter Example 2 – PartyKYCCheckAdapter 90

7 Business Policy Extension 95

7.1 Base Implementation of Business Policy 95

7.2 Extending Business Policy 96

7.3 Configuration 97

7.4 Extensions Using Groovy 97

8 OBP Extensibility Support Using Eclipse Plugin 99

8.1 Configure Eclipse Preferences for OBP Service Plugin 99

8.2 Support for Application Service Provider Extension 103

8.2.1 Generate Application Service Provider Extension 103

8.2.2 Configure OBP Extensibility Server Explorer - View 112

8.2.3 Exposed Webservice for Application Service SPI Extensions 118

5

8.2.4 Deploy Application Service SPI to Server 118

8.2.5 Database Inserts: Application Service SPI Extension Deployment 122

8.2.6 Fetching Deployed Application Service SPI Extension 126

8.2.7 Undeploying Application Service SPI Extension 127

8.2.8 Case of Multiple Application Service SPI Extensions 129

8.2.9 Inclusion of Groovy Extension in Actual Code Flow 130

8.3 Support for Business Policy Extension 131

8.3.1 Generate Business Policy Extension 131

8.3.2 Exposed Webservice for Business Policy Extensions 137

8.3.3 Deploy Business Policy Extension to Server 138

8.3.4 Database Inserts: Business Policy Extension Deployment 141

8.3.5 Fetching Deployed Business Policy Extension 145

8.3.6 Undeploying Business Policy Extension from Server 147

8.3.7 Inclusion of Groovy Extension in Actual Code Flow 148

8.4 Support for Adapter Extension 150

8.4.1 Generate Adapter Extension 150

8.4.2 Exposed Webservice for Adapter Extensions 155

8.4.3 Deploy Adapter Extension to Server 156

8.4.4 Database Inserts: Adapter Extension Deployment 159

8.4.5 Fetching Deployed Adapter Extension 163

8.4.6 Undeploying Adapter Extension from Server 165

8.4.7 Inclusion of Groovy Extension in Actual Code Flow 167

9 Batch Framework Extensions 169

9.1 Typical Business Day in OBP 169

9.2 Overview of Categories 170

6

9.2.1 Beginning of Day (BOD) 170

9.2.2 Cut-off 170

9.2.3 End of Day (EOD) 171

9.2.4 Internal EOD 171

9.2.5 Statement Generation 171

9.2.6 Customer Communication 171

9.3 Batch Framework Architecture 171

9.3.1 Static View 172

9.3.2 Dynamic View 173

9.4 Batch Framework Components 175

9.4.1 Category Components 175

9.4.2 Shell Components 176

9.4.3 Stream Components 177

9.4.4 Database Components 179

9.5 Batch Configuration 179

9.5.1 Creation of New Category 179

9.5.2 Creation of Bean Based Shell 182

9.5.3 Creation of Procedure Based Shell 187

9.5.4 Population of Other Parameters 189

9.6 Batch Execution 191

10 Uploaded File Data Processing 193

10.1 Configuration 194

10.1.1 Database Tables and Setup 195

10.1.2 File Handlers 198

10.1.3 Record Handlers for Both Header and Details 199

7

10.1.4 DTO and Keys Classes for Both Header and Details 200

10.1.5 XFF File Definition XML 202

10.2 Processing 205

10.2.1 API Calls in the Handlers 205

10.2.2 Processing Adapter 206

10.3 Outcome 207

10.4 Failure/Exception Handling 208

11 Alerts Extension 209

11.1 Transaction as an Activity 209

11.1.1 Activity Record 209

11.1.2 Attaching Events to Activity 210

11.1.3 Event Record 210

11.1.4 Activity Event Mapping Record 211

11.1.5 Activity Log DTO 212

11.1.6 Alert Metadata Generation 212

11.1.7 Alert Message Template Maintenance 215

11.1.8 Alert Maintenance 216

11.2 Alert Subscription 217

11.2.1 Transaction API Changes 218

11.3 Alert Processing Steps 220

11.4 Alert Dispatch Mechanism 223

11.5 Adding New Alerts 226

11.5.1 New Alert Example 227

11.5.2 Testing New Alert 228

11.6 Support For Derived Facts 229

8

12 Creating New Reports 235

12.1 Data Objects for the Report 235

12.2 Catalog Folder 238

12.3 Data Source 239

12.4 Data Model 239

12.5 XML View of Report 242

12.6 Layout of the Report 243

12.7 View Report in BIP 244

12.8 OBP Batch Report Configuration - Define the Batch Reports 245

12.9 OBP Batch Report Configuration - Define the Batch Report Shell 246

12.10 OBP Batch Report Configuration - Define the Batch Report Shell Depend-
encies 246

12.11 OBP Batch Report Configuration 247

12.11.1 Batch Report Generation for a Branch Group Code 247

12.11.2 Batch Report Generation Status 247

12.11.3 Batch Report Generation Path 248

12.12 OBP Adhoc Report Configuration 248

12.12.1 Define the Adhoc Reports 248

12.12.2 Define the Adhoc Report Parameters 249

12.12.3 Define the Adhoc Reports to be listed in Screen 249

12.12.4 Adding Screen Tab for Report Module 249

12.13 Adhoc Report Generation – Screen 7775 250

12.14 Adhoc Report Viewing – Screen 7779 251

13 Security Customizations 255

13.1 OPSS Access Policies – Adding Attributes 257

13.1.1 Steps 257

9

13.2 OAAM Fraud Assertions – Adding Attributes 260

13.2.1 Steps 260

13.3 Matrix Based Approvals – Adding Attributes 262

13.4 Security Validators 263

13.4.1 Customer Validators 263

13.4.2 Account Validators 263

13.4.3 Business Unit Validators 264

13.5 Customizing User Search 264

13.5.1 Steps 264

13.6 Customizing One-Time-Password (OTP) Processing Logic 265

13.6.1 Steps 265

13.7 Customizing Role Evaluation 265

13.7.1 Steps 265

13.8 Customizing Limits Exclusions 265

13.8.1 Steps 266

13.9 Customizing Business Rules 266

13.9.1 Steps to Update the Business Rules by Browser 266

13.9.2 Steps to Update the Business Rules in JDeveloper 275

14 Loan Schedule Computation Algorithm 281

14.1 Adding a New Algorithm 281

14.2 Consuming Third Party Schedules 284

15 Facts and Rules Configuration 285

15.1 Facts 285

15.1.1 Type of Facts 285

15.1.2 Facts Vocabulary 286

10

15.1.3 Generation of Facts using Eclipse Plug-in 287

15.1.4 Object Facts 307

15.2 Business Rules 310

15.2.1 Rules Engine 310

15.2.2 Rules Creation by Guided Rule Editor 310

15.2.3 Rules Creation By Decision Table 311

15.2.4 Rules Storage 312

15.2.5 Rules Deployment 313

15.2.6 Rules Versioning 313

15.3 Rules Configuration in Modules 313

15.3.1 Generic Rules Configuration 314

15.4 Rules Migration 317

15.4.1 Rules Configured for Modules 317

16 Composite Application Service 321

16.1 Composite Application Service Architecture 321

16.2 Multiple APIs in Single Module 322

17 ID Generation 329

17.1 Database Setup 330

17.1.1 Database Configuration 331

17.2 Automated ID Generation 331

17.3 Custom ID Generation 334

18 Extensibility of Domain Objects using Flex Fields 337

18.1 Flex Field - Provisioning details 337

18.2 Flex Field - Fact support 338

18.3 Flex Field – Validation Support 338

11

18.4 Flex Field – Usage Instructions 343

19 Extensibility of Domain Objects - Dictionary Pattern 345

19.1 Customized Domain Object Attribute Placeholders 346

19.2 Customized Domain Object DTO Interceptor in UI Layer 347

19.2.1 Interceptor Hook to Persist Customized Domain Object Attributes 347

19.2.2 Interceptor Hook to Fetch Customized Domain Object Attributes 348

19.3 Dictionary Data Transfer from UI to Host 349

19.3.1 Customized Domain Object DTO Transfer from UI to Host 349

19.3.2 Customized Domain Object DTO transfer from Host to UI 353

19.4 Translating Dictionary Data into Custom Domain Object 357

19.4.1 Instantiation and Persistence of Custom Domain Objects 357

19.4.2 Fetching of Customized Domain Objects 358

19.4.3 Defining of Customized Domain Objects 359

19.5 Customized Domain Object ORM Configuration 360

19.5.1 Case 1 - Non-Inheritance based mapping 360

19.5.2 Case 2 - Mapped as ORM Subclass 363

19.5.3 Case 3 - Mapped as ORM Union-Subclass or Joined-Subclass 364

19.5.4 Case 4 - Mapped as ORM Component 367

19.6 Extensibility using Dictionary in Origination Application 367

19.6.1 ICustomDataHandler's as DictionaryArray Interceptor 367

19.6.2 Create Customized Abstract Domain Object Class 368

19.6.3 Create Customized Abstract Domain Object ORMMapping File 369

19.6.4 Create Customized Abstract Domain Object Attribute Columns 369

19.7 Extensibility using Attributes of Various Supported Datatypes 370

19.8 Customized Domain Object having Collection of Objects as Attributes 375

12

19.9 Limitation to Extensibility using Dictionary Pattern 378

20 Deployment Guideline 381

20.1 Customized Project Jars 381

20.2 Database Objects 381

20.3 Extensibility Deployment 381

21 OCH Integration 383

21.1 Integration Adapter Interface 383

21.2 Abstract Integration Adapter Class 384

21.3 Sample Integration Adapter 385

21.4 Integration Abstract Assembler 386

21.5 Sample Assembler 387

22 Algorithm Extensions 389

22.1 Overview 389

22.2 Algorithm Spots 389

22.3 Algorithm Components 391

22.4 List of Algorithm Spots 400

13

List of Figures

Figure 3–1 Extending Service Execution 39

Figure 3–2 OBP Application Adapters 40

Figure 3–3 Extending Business Policy 41

Figure 3–4 Batch Framework Extension 42

Figure 3–5 Upload File Processing 43

Figure 3–6 Alerts Extension 44

Figure 3–7 Creating New Reports 45

Figure 3–8 Security Customization 46

Figure 3–9 Loan Schedule Computation Algorithm 47

Figure 3–10 Facts and Business Rules 48

Figure 3–11 Composite Application Service 48

Figure 3–12 ID Generation 49

Figure 3–13 OCH Integration 50

Figure 4–1 Standard Set of Framework Method Calls 52

Figure 4–2 Extension Hook for Document Type Application Service 53

Figure 4–3 Default Application Service Extension 54

Figure 4–4 Application Service Extension Executor 55

Figure 4–5 Extension Factory Hook for Document Type Application Service 55

Figure 4–6 Factory Implementation of Extension Hook for Document Type Applic-
ation Service 56

Figure 4–7 Application Service Extension Using Groovy 58

Figure 4–8 PROP_ID and CATEGORY_ID 58

Figure 4–9 SUMMARY_TEXT 58

Figure 4–10 Add Groovy Library to Classpath 58

14

Figure 4–11 Extended Application Service Extension 59

Figure 4–12 Extended Application Service Extension - Post and Pre Hook 60

Figure 4–13 Extension Hook for Document Type Application Service Spi Ext 61

Figure 4–14 Default Implementation of Appx Extension 62

Figure 4–15 Extended Application Service Extension Executor 63

Figure 4–16 Extension Factory Hook for Document Type Application Service Spi
Ext 64

Figure 4–17 Factory Implementation of Extension Hook for Document Type Applic-
ation Service Spi Ext 65

Figure 4–18 Application Service Appx Extension using Groovy 66

Figure 4–19 PROP_ID and CATEGORY_ID 66

Figure 4–20 SUMMARY_TEXT 66

Figure 4–21 Add Groovy Library to Classpath 66

Figure 4–22 Maintenance of Document Types 67

Figure 4–23 Document Type Application Service Spi Ext - Appx Layer 68

Figure 4–24 Doc Type Application Service Spi Ext - Appx Layer 69

Figure 4–25 Document Type Application Service Spi Ext - App Layer 70

Figure 4–26 Doc Type Application Service Spi Ext - App Layer 71

Figure 4–27 Pre and Post Middleware Specific Transaction Tasks Overview 72

Figure 4–28 FLX_FW_MW_TASKS 73

Figure 4–29 FLX_FW_MW_TASKS_DTO_DEFN 73

Figure 4–30 FLX_FW_MW_TASKS_DTO_MAP 74

Figure 4–31 FLX_MD_SERVICE_ATTR 74

Figure 4–32 FLX_MD_GEN_ATTR_LEGACY_B 75

Figure 4–33 Custom Application Service 75

Figure 6–1 Package Diagram 82

15

Figure 6–2 Adapter Mechanism Class Diagram 83

Figure 6–3 Adapter Mechanism Sequence Diagram 84

Figure 6–4 Adapter Implementation Using Groovy 87

Figure 6–5 Credit Card Adapter Implementation Using Groovy 88

Figure 6–6 Modify AdapterFactories.properties for GroovyCred-
itCardAdapterFactory 88

Figure 6–7 Modify Preferences.xml for GroovyCreditCardAdapterFactory 88

Figure 6–8 Add Groovy Library to Classpath 89

Figure 6–9 Party KYC Status Check Adapter Interface 91

Figure 6–10 Default Implementation of I Party KYC Check Adapter Interface 91

Figure 6–11 KYC Adapter Factory with Mocking Support 92

Figure 7–1 Business Policy Extension 95

Figure 7–2 validate() method in AbstractBusinessPolicy.java 96

Figure 7–3 validatePolicy() in creditCardBusinessPolicy.java 96

Figure 7–4 Add a preference for custom business policy in preferences.xml 97

Figure 7–5 Extensions using Groovy 98

Figure 8–1 Java Eclipse - Select Preferences 99

Figure 8–2 Preferences Dialog Box - OBP Service Plugin 100

Figure 8–3 Folder Selection 101

Figure 8–4 Browse for Folder 102

Figure 8–5 Configuring MWLib Path Parameter 103

Figure 8–6 Java Eclipse - Select Generate Service Provider Extension 104

Figure 8–7 Service Extension Configuration 105

Figure 8–8 Enter Search Keyword to Filter Base SPI File 106

Figure 8–9 Select Base SPI File 107

Figure 8–10 Set Extension Class Name and Package 108

16

Figure 8–11 Click Generate Extension Code 109

Figure 8–12 Extension Code Generated with Extension Hooks 110

Figure 8–13 Save Extension and Finish 111

Figure 8–14 Java Eclipse 112

Figure 8–15 Click Server Explorer 113

Figure 8–16 Server Explorer View tab 114

Figure 8–17 Create Server Connection 115

Figure 8–18 Provide Details for Server Configuration 116

Figure 8–19 Server Configured 117

Figure 8–20 ExtensionApplicationServiceSpi 118

Figure 8–21 Java Eclipse 119

Figure 8–22 Select Server Explorer to Deploy Extension 120

Figure 8–23 Extension Deployed 121

Figure 8–24 Application Service SPI Extension Deployment - Single Record
View 122

Figure 8–25 Application Service SPI Extension Deployment - Single Record
View 123

Figure 8–26 Application Service SPI Extension Deployment - View Value 124

Figure 8–27 Application Service SPI Extension Deployment - Single Record
View 125

Figure 8–28 Java Eclipse - Fetching Deployed Application Service SPI Extension126

Figure 8–29 Click on Extension under Server Explorer 127

Figure 8–30 Java Eclipse - Undeploying Application Service SPI Extension 128

Figure 8–31 Click on Extension under Server Explorer 129

Figure 8–32 Adding multiple Groovy extensions for the same Application Service
SPI 130

Figure 8–33 ServiceProviderExtensionFactory.getServiceProviderExtensions 130

17

Figure 8–34 Groovy Extensions compiled and included in Code Flow 131

Figure 8–35 Generate Business Policy Extension 132

Figure 8–36 Business Policy Extension Configuration 133

Figure 8–37 Select Base Business Policy file 134

Figure 8–38 Enter Extension Class Name and Package 135

Figure 8–39 Click Save Policy Extension and Finish 136

Figure 8–40 Business Policy Extension Application ServiceSpi 137

Figure 8–41 Click Deploy Business Policy Extension To Server 138

Figure 8–42 Select Server 139

Figure 8–43 Extension Deployed on Server 140

Figure 8–44 Business Policy Extension Deployment - Single Record View 141

Figure 8–45 Business Policy Extension Deployment - Single Record View 142

Figure 8–46 Business Policy Extension Deployment - View Value 143

Figure 8–47 Business Policy Extension Deployment - Single Record View 144

Figure 8–48 Fetching Deployed Business Policy Extension 145

Figure 8–49 Click Extension under Server Explorer 146

Figure 8–50 Undeploying the Extension from Server 147

Figure 8–51 Undeploying the Extension from Server 148

Figure 8–52 AbstractBusinessPolicyFactory.java 149

Figure 8–53 AbstractBusinessPolicyFactory.java 149

Figure 8–54 Generate Adapter Extension 150

Figure 8–55 Adapter Extension Configuration 151

Figure 8–56 Adapter Extension Configuration 152

Figure 8–57 Enter Extension Class Name and Package 153

Figure 8–58 Save Adapter Extension and Finish 154

18

Figure 8–59 Adapter Extension Application Service Spi 155

Figure 8–60 Deploy Business Policy Extension To Server 156

Figure 8–61 Select Server 157

Figure 8–62 Extension Deployed 158

Figure 8–63 Adapter Extension Deployment - Single Record View 159

Figure 8–64 Adapter Extension Deployment - Single Record View 160

Figure 8–65 Adapter Extension Deployment - View Value 161

Figure 8–66 Adapter Extension Deployment - Single Record View 162

Figure 8–67 Fetching Deployed Adapter Extension 163

Figure 8–68 Click Extension from Server 164

Figure 8–69 Undeploying Extension from Server 165

Figure 8–70 Extension Undeployed 166

Figure 8–71 Groovy Extension in Code Flow 167

Figure 8–72 AdapterFactory 168

Figure 9–1 Business Day in OBP 170

Figure 9–2 Batch Framework Architecture - Static View 173

Figure 9–3 Dynamic View Sequence Diagram 174

Figure 9–4 State Diagram of a Shell 175

Figure 9–5 Creation of New Category 182

Figure 9–6 Population of Other Parameters 189

Figure 9–7 Population of Other Parameters - General Tab 189

Figure 9–8 Population of Other Parameters - Connection Pool 190

Figure 9–9 Population of Other Parameters - Set IS_DB_RAC 190

Figure 9–10 Population of Other Parameters - Specify Data 191

Figure 9–11 Batch Execution 191

19

Figure 10–1 Uploaded Data File Processing Framework 194

Figure 10–2 File Handlers 199

Figure 10–3 Record Handlers for Both Header and Details 200

Figure 10–4 DTO and Keys Classes for Both Header and Details - Head-
erRecDTOKey 201

Figure 10–5 DTO and Keys Classes for Both Header and Details -
AbstractDTORec 202

Figure 10–6 XXF File Definition XML 204

Figure 10–7 API Calls in Adapters 206

Figure 10–8 Processing Adapter 207

Figure 11–1 Sample script for Activity Record 210

Figure 11–2 Sample script for Event Record 211

Figure 11–3 Activity Event Mapping Record 211

Figure 11–4 Activity Log DTO 212

Figure 11–5 Metadata Generation 213

Figure 11–6 Service Data Attribute Generation 214

Figure 11–7 Alert Message Template Maintenance 216

Figure 11–8 Alert Maintenance 217

Figure 11–9 Alert Subscription 218

Figure 11–10 Transaction API Changes - Service Call 218

Figure 11–11 Transaction API Changes - Conditional Evaluation 219

Figure 11–12 Transaction API Changes - persistActivityLog(..) 219

Figure 11–13 Transaction API Changes - Activity Log 219

Figure 11–14 Transaction API Changes - Register Activity 220

Figure 11–15 Alert Processing Steps 221

Figure 11–16 Event Processing Status Type 222

20

Figure 11–17 Batch Alerts 223

Figure 11–18 Alert Dispatch Mechanism 224

Figure 11–19 Alert Dispatch Mechanism - Dispatcher Factory 225

Figure 11–20 Alert Dispatch Mechanism - Destination 226

Figure 11–21 Alert.Party.FirstName 230

Figure 11–22 Facts in Alerts Framework 230

Figure 11–23 Alert.Party.PartyId 230

Figure 11–24 Alert.Party.Prefix and Alert.Party.LastName 231

Figure 11–25 Message Template (Fast Path: AL03) 231

Figure 11–26 Placeholder for Derived Facts 232

Figure 11–27 Alert Maintenance (Fast Path: AL04) 232

Figure 11–28 Alert Maintenance - Map the New Message Template Placeholders 233

Figure 11–29 Alert Maintenance - Facts List 233

Figure 11–30 Alert Maintenance - Mapping Completed 234

Figure 11–31 Alert Mail on Mobile Number Update in Contact Point screen 234

Figure 12–1 Creating New Reports 235

Figure 12–2 Global Temporary Table 236

Figure 12–3 Report Record Type 236

Figure 12–4 Report Table Type 237

Figure 12–5 Report DML Function 237

Figure 12–6 Report DDL Function 238

Figure 12–7 Catalog Folder 238

Figure 12–8 Data Source 239

Figure 12–9 Data Model 240

Figure 12–10 Data Set 240

21

Figure 12–11 Group Fields 241

Figure 12–12 XML Structure and Labels 241

Figure 12–13 XML Code 242

Figure 12–14 Add Input Parameters 242

Figure 12–15 XML View of Report 243

Figure 12–16 Layout of the Report - Create Layout 244

Figure 12–17 Layout of the Report - Batch Job Results 244

Figure 12–18 View Report in BIP 245

Figure 12–19 Batch Report Generation for a Branch Group Code 247

Figure 12–20 Batch Report Generation Path 248

Figure 12–21 Adhoc Report Generation - Report Request 250

Figure 12–22 Adhoc Report Generation - Report Generated 251

Figure 12–23 Advice Report 252

Figure 12–24 View Generated Adhoc Report 253

Figure 13–1 Security Customizations Interface 256

Figure 13–2 Security Use Case with Access Checks and Assertions 257

Figure 13–3 Add Attributes to Access Policy Rule 258

Figure 13–4 Attribute to Access Policy Rule - Authorization Management 258

Figure 13–5 Add or Modify Access Policy Rule 260

Figure 13–6 Add or Modify Fraud Rules in OAAM - Data Tab 261

Figure 13–7 Add or Modify Fraud Rules in OAAM - Conditions Tab 262

Figure 13–8 Log in to BPMWorklist Application screen 267

Figure 13–9 Task Configuration tab 268

Figure 13–10 Stages of Approval 269

Figure 13–11 Select Test Condition 270

22

Figure 13–12 Select Values 271

Figure 13–13 Select Specific Task 272

Figure 13–14 Update Values 273

Figure 13–15 Save the Updated Rule 274

Figure 13–16 Commit the Changes 275

Figure 13–17 Expand Business Rules 276

Figure 13–18 Create New Stage 277

Figure 13–19 Add New Rule 278

Figure 13–20 Populate the New Rule 279

Figure 13–21 Deploy Project Jar 280

Figure 14–1 Add New Algorithm 281

Figure 14–2 Create New Installment 282

Figure 15–1 Select Window Preferences 288

Figure 15–2 Window Preferences - OBP Plugin Development 289

Figure 15–3 Enter the Preferences Fact values 290

Figure 15–4 Fact Properties - aggregateCodeFilePath 291

Figure 15–5 Fact Properties - sourceFilePath 292

Figure 15–6 Start Host Server 293

Figure 15–7 Select Open Perspective value 294

Figure 15–8 Fact Explorer 295

Figure 15–9 Fact Vocabulary 296

Figure 15–10 Domain Category 297

Figure 15–11 Fact Groups 298

Figure 15–12 Facts 299

Figure 15–13 Business Definition Tab 300

23

Figure 15–14 Value Definition Tab 300

Figure 15–15 Enum Definition Tab 301

Figure 15–16 Aggregrate Definition Tab 302

Figure 15–17 Aggregate File Tab 303

Figure 15–18 Creating New Fact - Add 304

Figure 15–19 Creating New Fact - Fact Business Definition 305

Figure 15–20 Creating New Fact - Domain Group 306

Figure 15–21 Saving New Fact 306

Figure 15–22 Saving New Fact - Fact Added 307

Figure 15–23 Designate Class as Object Fact 308

Figure 15–24 Object Fact in UI 309

Figure 15–25 Generic Rule Configuration 315

Figure 15–26 Rule Author - Decision Table 316

Figure 15–27 Rule Author - Expression Builder 317

Figure 16–1 Composite Application Service Architecture 322

Figure 17–1 Configuration of ID Generation Process 329

Figure 17–2 Automated ID Generation - Single Record View 332

Figure 17–3 Automated ID Generation - Generate Submission ID 333

Figure 17–4 Automated ID Generation - Submission ID Generation Service 333

Figure 17–5 Custom ID Generation - Custom ID Generator 334

Figure 17–6 Custom ID Generation - Custom ID Generation Constants 335

Figure 17–7 Custom ID Generation - Custom Pattern Based Generator 336

Figure 18–1 Example - ORM Level 337

Figure 18–2 Example of Service Input / Data Transfer through Dictionary Object 338

Figure 18–3 Example 338

24

Figure 19–1 Extensibility of Domain Objects - Framework 346

Figure 19–2 Code Extract 347

Figure 19–3 Interceptor Hook to Persist Customized Domain Object 348

Figure 19–4 Interceptor Hook to Fetch Customized Domain Object 349

Figure 19–5 JSONClient constructs the JSON Object 350

Figure 19–6 SerializeDictionaryArray to include GenericName and Value attrib-
utes 351

Figure 19–7 Host Server JSONFacade extracts the attribute of JSON Object 352

Figure 19–8 AbstractJSONFacade's getDictionaryArray method 353

Figure 19–9 Host Server JSONFacade constructs the JSON Object 354

Figure 19–10 AbstractJSONFacade's serializeDictionaryArray to include Generic
Name and Value attributes 355

Figure 19–11 UI Server JSONClient extracts the DictionaryArray attribute 356

Figure 19–12 AbstractJSONBindingStub's getDictionaryArray method 357

Figure 19–13 Instantiation of DataTransferObjects 359

Figure 19–14 Adding Discriminator Column Mapping in Existing ORM file 361

Figure 19–15 ORM File Mapping to Customized Domain Object 361

Figure 19–16 Adding New Java File to the Customized Domain Object 362

Figure 19–17 Adding Extra Columns along with the Discriminator Column 362

Figure 19–18 Adding a New ORM File Mapping to Customized Domain Object 363

Figure 19–19 Adding New Java File to Customized Domain Object 364

Figure 19–20 New ORM File Mapping 365

Figure 19–21 Adding New Java File 365

Figure 19–22 Create a New Table CZ_NAB_LM_PROPOSED_FACILITY 366

Figure 19–23 CustomDataHandler's as DictionaryArray Interceptor 368

Figure 19–24 Create Customized Abstract Domain Object Class 369

25

Figure 19–25 Create Customized Abstract Domain Object ORMMapping File 369

Figure 19–26 Create Customized Abstract Domain Object Attribute Columns 369

Figure 19–27 Customized Message Template Class 371

Figure 19–28 Domain Object Table 372

Figure 19–29 ORM File 372

Figure 19–30 JUnit Test Case 373

Figure 19–31 JUnit Adds Table Record 373

Figure 19–32 Dictionary Array Values 374

Figure 19–33 Customized Domain Object having collection of Objects as Attrib-
utes 375

Figure 19–34 Member Attributes of Customized Domain Object 376

Figure 19–35 Dictionary Array Elements 376

Figure 19–36 Customized Domain Object constructed by AbstractAssembler 377

Figure 19–37 Dictionary Array returned by AbstractAssembler 378

Figure 20–1 Extensibility Deployment 382

Figure 21–1 Integration Adapter Interface 384

Figure 21–2 Abstract Integration Adapter Class 385

Figure 21–3 Sample Integration Adapter 386

Figure 21–4 Integration Abstract Assembler 387

Figure 21–5 Sample Assembler 388

Figure 22–1 Algorithm Spot Interface 389

Figure 22–2 Example: Algorithm Spot Interface 390

Figure 22–3 Example: Adding New Algorithm Spot 391

Figure 22–4 Example: Data Validation Algorithm Component 392

Figure 22–5 Example: CharAdhocDateValidation 393

Figure 22–6 New Algorithm Implementation 394

26

Figure 22–7 Adhoc Characteristic Date Validation 394

Figure 22–8 Algorithm Spot Interface Methods 395

Figure 22–9 Algorithm Spot Interface Methods (continued) 396

Figure 22–10 Generated Artifacts 397

Figure 22–11 Generated Artifacts 398

Figure 22–12 Create Algorithm Type 399

Figure 22–13 Attach Algorithm 400

27

List of Tables

Table 6–1 Components of Adapter Implementation 81

Table 9–1 Database Server Components 179

Table 9–2 FLX_BATCH_JOB_CATEGORY_MASTER 180

Table 9–3 FLX_BATCH_JOB_GRP_CATEGORY 180

Table 9–4 FLX_BATCH_JOB_CATEGORY_DEPEND 181

Table 9–5 FLX_BATCH_JOB_SHELL_MASTER 183

Table 9–6 FLX_BATCH_JOB_SHELL_DTLS 184

Table 9–7 FLX_BATCH_JOB_SHELL_DEPEND 185

Table 9–8 Driver Table 185

Table 9–9 Actions Table 186

Table 10–1 FLX_EXT_FILE_UPLOAD_MAST 195

Table 10–2 Mandatory Fields in Record Tables 196

Table 10–3 FLX_EXT_FILE_PARAMS 196

Table 10–4 FLX_BATCH_JOB_SHELL_DTLS 197

Table 10–5 XXF File Definition XML 203

Table 10–6 Process Status 208

Table 11–1 FLX_EP_ACT_B 209

Table 11–2 FLX_EP_EVT_B 210

Table 11–3 FLX_EP_ACT_EVT_B 211

Table 11–4 Key Fields in FLX_MD_SERVICE_ATTR 214

Table 15–1 Example of a Decision Table 311

Table 15–2 Actions 312

Table 15–3 Conditions 312

Table 15–4 Rules Versioning 313

28

Table 15–5 Details of Configured Rules in Modules 317

Table 16–1 Java Classes 322

Table 17–1 FLX_CS_ID_CONFIG_B 330

Table 17–2 FLX_CS_ID_RANGE 330

Table 17–3 FLX_CS_ID_USF 331

Table 18–1 Metadata Table - flx_fw_ff_metadata 339

Table 22–1 List of Algorithm Spots 401

29

Preface

This guide explains customization and extension of Oracle Banking Platform.

This preface contains the following topics:

n Audience

n Documentation Accessibility

n Related Documents

n Conventions

Audience
This guide is intended for the users of Oracle Banking Platform.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/us/corporate/accessibility/index.html.

Access to Oracle Support

Oracle customers have access to electronic support throughMy Oracle Support. For information, visit
http://www.oracle.com/us/corporate/accessibility/support/index.html#info or visit
http://www.oracle.com/us/corporate/accessibility/support/index.html#trs if you are hearing impaired.

Related Documents
Formore information, see the following documentation:

n For installation and configuration information, see the Oracle Banking Platform Installation Guide -
Silent Installation.

n For a comprehensive overview of security, see the Oracle Banking Security Guide.

n For the complete list of licensed products and the third-party licenses included with the license, see the
Oracle Banking Licensing Guide.

n For information related to setting up a bank or a branch, and other operational and administrative
functions, see the Oracle Banking Administrator’s Guide.

n For information on the functionality and features, see the respective Oracle Banking Functional
Overview documents.

Conventions
The following text conventions are used in this document:

30

http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/support/index.html#info
http://www.oracle.com/us/corporate/accessibility/support/index.html#trs

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

31

32 | Oracle Banking Platform Host Extensibility Guide

1 About This Guide

This guide is applicable for the following products:

n Oracle Banking Platform (OBP)

n Oracle Banking Enterprise Product Manufacturing (OBEPM)

n Oracle Banking Enterprise Originations (OBEO)

n Oracle Banking Enterprise Collections (OBEC)

References to Oracle Banking Platform or OBP in this guide apply to all the abovementioned products. The
chapters and sections that are not applicable for any of the products are listed in this chapter.

1.1 Sections Not Applicable for Oracle Banking Enterprise
Product Manufacturing
The following chapters and sections in this guide are not applicable for Oracle Banking Enterprise Product
Manufacturing.

n Section 3.1.7 Alert Extension

n Section 3.1.10 Loan Schedule Computation Algorithm

n Section 3.1.14 OCH Integration

n Section 6.2.2 Example 2 – DispatchAdapter

n Section 11.3 Alert Processing Steps

n Chapter 12 Creating New Reports

n Chapter 21 OCH Integration

1.2 Sections Applicable Only for Oracle Banking Enterprise
Collections
This following chapters and sections in this guide are applicable only for Oracle Banking Enterprise
Collections.

n Chapter 22 Algorithm Extensions

1 About This Guide | 33

34 | Oracle Banking Platform Host Extensibility Guide

2 Objective and Scope

This chapter defines the objective and scope of this document.

2.1 Overview
Oracle Banking Platform (OBP) is designed to help banks respond strategically to today’s business
challenges, while also transforming their business models and processes to reduce operating costs and
improve productivity across both front and back offices. It is a one-stop solution for a bank that seeks to
leverageOracle Fusion experience for its core banking operations, across its retail and corporate offerings.

OBP provides a unified yet scalable IT solution for a bank tomanage its data and end-to-end business
operations with an enriched user experience. It comprises pre-integrated enterprise applications leveraging
and relying on the underlying Oracle Technology Stack to help reduce in-house integration and testing efforts.

2.2 Objective and Scope
Most product development can be accomplished through highly flexible system parameters and business
rules. Further competitive differentiation can be achieved through IT configuration and extension support. In
OBP, additional business logic required for certain services is not always a part of the core product
functionality but could be a client requirement. For these purposes, extension points and customization
support have been provided in the application code which can be implemented by the bank and / or by
partners, wherein the existing business logic can be added with or overridden by customized business logic.
This way the time consuming activity of custom coding to enable region specific, site specific or bank specific
customizations can beminimized.

2.2.1 Extensibility Objective
The broad guiding principles with respect to providing extensibility in OBP are summarized below:

n Strategic intent for enabling customers and partners to extend the application.

n Internal development uses the same principles for client specific customizations.

n Localization packs

n Extensions by Oracle Consultants, Oracle Partners, Banks or Bank Partners.

n Extensions through the addition of new functionality or modification of existing functionality.

n Planned focus on this area of the application. Hence, separate budgets specifically for this.

n Standards based - OBP leverages standard tools and technology

n Leverage large development pool for standards based technology.

n Developer tool sets provided as part of JDeveloper and Eclipse for productivity.

2.2.2 Document Scope
The scope of this document is to explain the customization and extension of OBP for the following use cases:

2 Objective and Scope | 35

2.3 Complementary Artefacts

n Customizing OBP UI

n Adding an ADF screen side validation to an existing field

n Adding a new field or a table on the screen

n Removing fields from the UI

n Customizing OBP application services and implementing composite application services

n Adding pre-processing or post processing validations in the application services extension

n Altering the product behavior at customizations hooks provided as adapter calls in functional areas that
are prone to change (for example, loan schedule generation) and in betweenmodules that can be
replaced (for example, alerts, content management)

n Adding new fields to the OBP domainmodel and including it on the corresponding screen.

n Adding a new report

n Adding a new batch program

n Customizing SOA based BPEL process with adding a partner link or a human task to an existing
process.

n Adding new steps as a sub-process

n Adding or customizing facts and business rules in the application and configuring them for different
modules

n Adding or customizing ID generation logic with options of automated, manual or custom generation

n Processing of the uploaded files data

n Printing of receipt once the transaction is over

n Defining the security related access and authorization policies

n Defining different security related rules, validator and processing logics

n Customizing different functionalities like user search, role evaluation and limit exclusion in the
application related to security

This document is a useful tool for Oracle Consulting, bank IT and partners for customizing and extending the
product.

2.3 Complementary Artefacts
The document is a developer’s extensibility guide and does not intend to work as a replacement of the
functional or technical specification, which would be the primary resource covering the following:

n OBP Zen training course

n OBP installation and configuration

n OBP parameterization as part of implementation

n Functional solution and product user guide

References to plugin indicate the eclipse basedOBP development plugin for relevant version of OBP being
extended. The plugin is not a product GA artefact and is ameans to assist development. Hence, the same is
not covered under product support.

36 | Oracle Banking Platform Host Extensibility Guide

2.4 Out of Scope

2.4 Out of Scope
The scope of extensibility does not intend to suggest that OBP is forward compatible.

2 Objective and Scope | 37

38 | Oracle Banking Platform Host Extensibility Guide

3 Overview of Use Cases

The use cases that are covered in this document shall enable the developer in applying the discipline of
extensibility to OBP. While the overall support for customizations is complete in most respects, the same is
not a replacement for implementing a disciplined, thoughtful and well-designed approach towards
implementing extensions and customizations to the product.

3.1 Extensibility Use Cases
This section gives an overview of the extensibility topics and customization use cases to be covered in this
document. Each of these topics is detailed in the further sections.

3.1.1 Extending Service Execution
In OBP, additional business logic might be required for certain services. This additional logic is not part of the
core product functionality but could be a client requirement. For these purposes, hooks have been provided in
the application code wherein additional business logic can be added or overridden with custom business logic.

Figure 3–1 Extending Service Execution

Following are the two hooks provided:

Service Extensions

3 Overview of Use Cases | 39

3.1 Extensibility Use Cases

This hook resides in the app layer of the application service. This hook is present for, before as well after the
actual service execution. The additional business logic has to implement the interface I<service_
name>ApplicationServiceExt and extend and override the default implementationVoid<service_
name>ApplicationServiceExt provided for the service. Multiple implementations can be defined for a
particular service. The service extensions executor invokes all the implementations defined for the particular
service both before and after the actual service executes.

Service Provider Extension

This hook resides in the appx layer of the application service. This hook, too, is present for before as well after
the actual service execution. The additional business logic has to implement the interface I<service_
name>ApplicationServiceSpiExt and extend and override the default implementationVoid<service_
name>ApplicationServiceExt provided for the service. Multiple implementations can be defined for a
particular service. The service extensions executor invokes all the implementations defined for the particular
service both before and after the actual service executes.

3.1.2 OBP Application Adapters
In OBP, adapters are used for helping two different modules or systems to communicate with each other. It
helps the consuming side adapt to any incompatibility of the invoked interface to work together. This is done
to achieve cleaner build time separation of different functional product processor modules. Hence, when Loan
Module needs to invoke services of Party Module or Demand Deposit module then an adapter class owned by
the Loans module will be used to ensure that functions such as defaulting of values, mocking of an interface,
and so on, are implemented in the adapter layer thereby relieving the coremodule functionality from getting
corrupted.

Figure 3–2 OBP Application Adapters

3.1.3 Extending Business Policy
In OBP, business policies are used for common business validations. For instance, credit card number
validation to check whether or not the credit card number entered by user complies with the specified format
or exists in the record. Business policy implementation strategy is based on factory design pattern and
implements a common business policy factory class for eachmodule. All the business policy factory classes

40 | Oracle Banking Platform Host Extensibility Guide

3.1 Extensibility Use Cases

extend to AbstractBusinessPolicyFactory Class. AbstractBusinessPolicyFactory Class returns the
BusinessPolicy class instance which extends to AbstractBusinessPolicy class. Application service invokes
the validate() method in AbstractBusinessPolicy class which in turn invokes validatePolicy() method in the
BusinessPolicy class.

Custom BusinessPolicies are implemented in OBP by configuring preferences in the preferences.xml file. In
this file a preference for customBusinessPolicy is defined which represents a query to the database. For
customization, create an entry in the Flx_or_config_all_b table with preference name and businessPolicy
code.

When application service invokes the createPolicyInstance() method of the BusinessPolicyFactory class,
this class invokes a getPolicyInstance() method of the AbstractBusinessPolicy class which looks for any
custom businessPolicy class in the database and returns the custom class if it gets one. Otherwise it returns
null, and a new instance of base BusinessPolicy class is created and returned to the invoking application
service.

Figure 3–3 Extending Business Policy

3.1.4 User Defined Fields
Custom Entities: Additional fields can be added to objects / entities from the very base level (ORM / POJO
layer) to the front end (View layer) level. This way is more costly since it requires changes at all layers of the
application. However, it has an advantage of the ability to use the additional data in the business logic of the
application.

n Client: The UI of the screen in which the additional data needs to be captured has to bemodified for
the additional fields. The view-service linkage also needs to bemodified for transferring the additional
data.

n Host:On the host side, the ORM and POJO for the entity have to bemodified to save the additional
field's data. The service layer has to bemodified for any business logic that is affected by the
additional fields.

3.1.5 Batch Framework Extension
This extensibility feature is provided becausemost of the enterprise applications require the bulk processing
of records to perform business operations in real-time environments. These business operations include
complex processing of large volumes of information that is most efficiently processed with minimal or no user
interaction. Such operations includes time-based events (For example, month-end calculations, notices or

3 Overview of Use Cases | 41

3.1 Extensibility Use Cases

correspondence), periodic application of complex business rules processed repetitively across very large data
sets (For example, rate adjustments).

All such scenarios form a part of batch processing for multiple records. Thus, Batch processing is used to
process billions of records for enterprise applications. There aremany categories in OBP Batch Processes
like Beginning of Day (BOD), End of Day (EOD), and Statement Generation, and so on, for which the batch
execution is performed.

Figure 3–4 Batch Framework Extension

3.1.6 Uploaded File Processing
File processing is an independent process and is done separately after file upload. Every upload provides a
unique file ID for the uploaded file. The processing is then done for each upload as per the required
functionality. The final status is provided at the end of the processing in the form of ProcessStatus.

An example can be salary credit processing. Once the employer account details (in header records) and the
multiple employee account details (in detail records) are uploaded through the file upload, the salary credit
processing can be done in which the employer account will be debited and themultiple accounts of the
employees will be credited.

42 | Oracle Banking Platform Host Extensibility Guide

3.1 Extensibility Use Cases

Figure 3–5 Upload File Processing

3.1.7 Alert Extension
OBP has to interface with various systems to transfer data which is generated during business activities that
take place during teller operations or processing. The system requires a framework which can support on-line
data transfer to interfacing systems.

This extension of event processingmodule of OBP provides a framework for identifying executing host
services as activities and generating / raising events that are configured against the same. Generation of
these events results in certain actions that can vary from dispatching data to subscribers (customers or
external systems) to execution of additional logic. The action whereby data is dispatched to subscribers is
termed as Alert. In OBP application, these Alerts can be customized and configured.

3 Overview of Use Cases | 43

3.1 Extensibility Use Cases

Figure 3–6 Alerts Extension

3.1.8 Create New Reports
OBP application provides functionality for configuringmultiple reports through integrated Oracle's Business
Intelligence Publisher Enterprise. It is a standalone reporting and document output management solution that
allows companies to lower the cost of ownership for separate reporting solutions. The developer can add and
configure an Adhoc report to OBP using the BI Publisher.

TheOBP application also has a batch framework using which a developer can easily add batch processes,
also known as batch shells, to the application. The batch framework executes all the batch shells defined in
the system as per their configuration. The results of these batch shell executions are stored in the database.
In OBP, the user can create and customize the batch reports based on the requirements which can vary from
client to client.

44 | Oracle Banking Platform Host Extensibility Guide

3.1 Extensibility Use Cases

Figure 3–7 Creating New Reports

3.1.9 Security Customization
OBP application comprises of several modules which have to interface with various systems in an enterprise
to transfer/share data. This data is generated during business activity that takes place during teller operations
or processing. While managing the transactions that are within OBP's domain, it also needs to consider
security and identity management and the uniform way in which these services need to be consumed by all
applications in the enterprise. This is possible if these capabilities can be externalized from the application
itself and are implemented within products that are specialized to handle such services.

3 Overview of Use Cases | 45

3.1 Extensibility Use Cases

Figure 3–8 Security Customization

OBP application therefore provides functionality where there is a provision for customizing the security
attributes or functions. For example:

n Attributes participating in access policy rules

n Attributes participating in fraud assertion rules

n Attributes participating in matrix based approval checks

n Account validator

n Customer validator

n Business unit validator

n Adding validators

n Customizing user search

n Customizing 2FA ‘SendOTP | Validate OTP’ logic

n Customizing Role Evaluation

n Customizing Limit Exclusions

46 | Oracle Banking Platform Host Extensibility Guide

3.1 Extensibility Use Cases

3.1.10 Loan Schedule Computation Algorithm
OBP application provides the extensibility by which the additional loan schedule computation algorithm can
be customized based on client's requirement.

Figure 3–9 Loan Schedule Computation Algorithm

3.1.11 Facts and Business Rules
Fact (in an abstract way) is something which is a reality or which holds true at a given point of time. Business
rules aremade up of facts. Business Rules are defined for improving agility and for implementing business
policy changes. This agility, meaning fast time tomarket, is realized by reducing the latency from approved
business policy changes to production deployment to near zero time. In addition to agility improvements,
Business Rules development also requires far fewer resources for implementing business policy changes.
This means that Business Rules not only provide agility, it also provides the bonus of cost reduced
development.

3 Overview of Use Cases | 47

3.1 Extensibility Use Cases

Figure 3–10 Facts and Business Rules

3.1.12 Composite Application Service
OBP provides the extensibility feature by which user can write the composite service in whichmultiple
service calls can bemade as part of single call. Transactions in composite application service aremade by
composing the single transaction out of themultiple APIs transaction that gives the effect of single
transaction.

Figure 3–11 Composite Application Service

48 | Oracle Banking Platform Host Extensibility Guide

3.1 Extensibility Use Cases

3.1.13 ID Generation
OBP is shipped with the functionality of ID generation in three ways that is, Automatic, Manual and Custom.
These three configurations can be defined by the user as per their requirements and IDs can be generated
accordingly.

Figure 3–12 ID Generation

3.1.14 OCH Integration
OBP provides various integration adapters and assemblers which are used to publish customer information to
OCH. These adapters and assemblers can be customized for publishing details to OCH.

Customization developer can extend the existing integration adapters to fetch or gather more information
about the customer and customize integration assembler to add new mappings.

3 Overview of Use Cases | 49

3.1 Extensibility Use Cases

Figure 3–13 OCH Integration

50 | Oracle Banking Platform Host Extensibility Guide

4 Extending Service Executions

This chapter describes how additional business logic can be added prior to execution (pre hook) and/or post
the execution (post hook) of particular application service business logic on the host side. Extension prior to a
service execution can be required for the purposes of additional input validation, input manipulation, custom
logging and so on. A few examples in which the application service extensions in the form of pre and post
hook could be required arementioned below.

An application service extension in the form of a pre hook can be important in the following scenarios:

n Additional input validations

n Execution of business logic, which necessarily has to happen before going ahead with normal service
execution.

An application service extension in the form of a post hook can be important in the following scenarios:

n Output responsemanipulation

n Third party system calls in the form of web service invocation, JMS interface and so on.

n Custom data logging for subsequent processing or reporting.

TheOBP application provides two layers where the pre and post extension hooks for extending service
execution can be implemented. These places are:

n Application Service layer – referred to as the “app” layer extension.

n Extended Application Service – referred to as the “appx” layer extension.

There are few differences in the extensions of the app and appx layer:

n In the appx layer extension, the validations can be added against the user defined fields which is not
possible in case of the app layer.

n In the appx layer extension, the service response can be passed when the return type is not
transaction status. This response can be validated or updated which is not available in case of app
layer.

n In the appx layer, the approvals can be incorporated and can be validated in the appx layer extension
which is not possible in app layer.

4.1 Service Extension – Extending the "app" Layer
The "app" layer is referred to as the application service layer. It denotes the business logic that executes as
part of a servicemethod exposed by OBP middleware host. Extension points provided as pre and post hooks
are present in this layer at the same points in the service. Every application servicemethod has a standard
set of framework method calls as shown in the sequence diagram below:

4 Extending Service Executions | 51

4.1 Service Extension – Extending the "app" Layer

Figure 4–1 Standard Set of Framework Method Calls

The pre hook is provided after the invocation of createTransactionContext call inside the application service.
At this step, the transaction context is set and the host application core framework is aware of the executing
service with respect to the authenticated subject or the user who has posted the transaction, transaction
inputs, financial dates, different determinant types applicable for the executing service, an initialized status
and has the ability to track the same against a unique reference number. At this step, the database session is
also initialized and accessible enabling the user to use the same in the pre hook for any database access
which needs to bemade.

The post hook is provided after the business logic corresponding to the application service invoked has
executed and before the successful execution of the entire service is marked in the status object. This
ensures that the status marking takes into consideration any execution failures of post hook prior to reporting
the result to the calling source. Both, the pre and the post hooks accept the service input parameters as the
inputs.

The following sections explain important concepts, which should be understood for extending in this service
layer.

4.1.1 Application Service Extension Interface
TheOBP plug-in for eclipse generates an interface for the extension of a particular service. The interface
name is in the form I<Service_Name>ApplicationServiceExt. This interface has a pair of pre and post method
definitions for each application servicemethod of the present. The signatures of thesemethods are:

52 | Oracle Banking Platform Host Extensibility Guide

4.1 Service Extension – Extending the "app" Layer

public void pre<Method_Name>(<Method_Parameters>) throws
FatalException;
public void post<Method_Name>(<Method_Parameters>) throws
FatalException;

A service extension class has to implement this interface. The premethod of the extension is executed before
the actual servicemethod and the post method of the extension is executed after the servicemethod.

Figure 4–2 Extension Hook for Document Type Application Service

4.1.2 Default Application Service Extension
TheOBP plug-in for eclipse generates a default extension for a particular service in the form of the class
Void<Service_Name>ApplicationServiceExt. This class implements the aforementioned service extension
interface without any business logic if the implementedmethods are empty.

The default extension is a useful and convenient mechanism to implement the pre and / or post extension
hooks for specific methods of an application service. Instead of implementing the entire interface, one should
extend the default extension class and override only requiredmethods with the additional business logic.
Product developers DONOT implement any logic, including product extension logic, inside the default
extension classes. This is because the classes are auto-generated and reserved for product use and get
overwritten as part of a bulk generation process.

4 Extending Service Executions | 53

4.1 Service Extension – Extending the "app" Layer

Figure 4–3 Default Application Service Extension

4.1.3 Application Service Extension Executor
TheOBP plug-in for eclipse generates a service extension executor interface and an implementation for the
executor interface. The naming convention for the generated executor classes which enable ’extension
chaining’ is as shown below:

Interface : I<Application Service
Qualifier>ApplicationServiceExtExecutor

Implementation : <Application Service
Qualifier>ApplicationServiceExtExecutor

The service extension executor class, on load, creates an instance each of all the extensions defined in the
service extensions configuration file. If no extensions are defined for a particular service, the executor creates
an instance of the default extension for the service. The executor also has a pair of pre and post methods for
eachmethod of the actual service. Thesemethods in turn call the correspondingmethods of all the extension
classes defined for the service.

54 | Oracle Banking Platform Host Extensibility Guide

4.1 Service Extension – Extending the "app" Layer

Figure 4–4 Application Service Extension Executor

Figure 4–5 Extension Factory Hook for Document Type Application Service

4 Extending Service Executions | 55

4.1 Service Extension – Extending the "app" Layer

Figure 4–6 Factory Implementation of Extension Hook for Document Type Application Service

4.1.4 Extension Configuration
The extension classes that implement the extension interface aremapped to the application service class
with the help of a property file mapping inside serviceextensions.properties. Themapping convention to be
specified is a service's fully qualified class name to comma separated extensions' fully qualified class name
in the following format:

<service_class_name>=<extension_class_name>,<extension_class_
name>...

Example Mapping : config/properties/serviceextensions.properties

Single extension configuration

com.ofss.fc.app.content.service.DocumentTypeApplicationService=
com.ofss.fc.app.content.service.ext.DocumentTypeApplicationService
Ext

Multiple extension configuration

com.ofss.fc.app.content.service.DocumentTypeApplicationService=

56 | Oracle Banking Platform Host Extensibility Guide

4.1 Service Extension – Extending the "app" Layer

com.ofss.fc.app.content.service.ext.in.DocumentTypeApplicationServ
iceExtension,
com.ofss.fc.app.content.service.ext.in.mum.DocumentTypeApplication
ServiceExtension,
com.ofss.fc.app.content.service.ext.in.mum.ExtendedDocumentTypeApp
licationService,
com.ofss.fc.app.content.service.ext.in.blr.DocumentTypeApplication
ServiceExtension,
com.ofss.fc.app.content.service.ext.in.blr.ExtendedDocumentTypeApp
licationService

It is possible to configuremultiple implementations of pre / post extensions for an executing service in this
layer. This is achieved with the help of the extension executor which has the capability to loop through a set of
extension implementations which conform to the extension interface which is supported by the service.

4.1.5 Application Service Extension Using Groovy
Application service extension can be implemented using Groovy. The sample code and steps for service
extension implementation using groovy is as follows:

Service extension groovy implementation class 'VoidSubmissionDocumentApplicationServiceExt'
implementing product service extension interface
'com.ofss.fc.app.origination.service.core.submissiondocument.ext.ISubmissionDocumentApplicationServic
eExt.

4 Extending Service Executions | 57

4.1 Service Extension – Extending the "app" Layer

Figure 4–7 Application Service Extension Using Groovy

Provide the fully qualified name of the above groovy implementation in flx_fw_config_all_b against the
corresponding service extension prop_id and category_id.

Figure 4–8 PROP_ID and CATEGORY_ID

Figure 4–9 SUMMARY_TEXT

Package the above implementation and add in custom library which the application is referring to and add the
groovy li in the classpath of the server which will be taken care by deployment team.

Figure 4–10 Add Groovy Library to Classpath

58 | Oracle Banking Platform Host Extensibility Guide

4.2 Extended Application Service Extension – Extending the "appx" Layer

4.2 Extended Application Service Extension – Extending the
"appx" Layer
The "appx" layer is referred to as the extended application service layer. It represents the business logic that
executes as part of a servicemethod exposed by OBP middleware host with additional internal service calls
to support extended features such as custom fields (that is, Dictionary pattern). The appx layer also provides
extension support, on top of and on the lines of the app layer. The implementation of extension support in this
layer is similar to the implementation of extension support in the app layer.

Figure 4–11 Extended Application Service Extension

The pre hook is provided before the invocation of actual application service call inside the extended
application service layer. At this step, the extended host application core framework is aware of the executing
service with respect to the authenticated subject or the user who has posted the transaction and an initialized
status. At this step, the database session is also initialized and accessible enabling the user to use the same
in the pre hook for any database access whichmight be required.

The post hook is provided after the primary application service which is extended in the appx layer along with
the remaining internal service calls. This is required to support extended features like approval related
processing and to complete execution beforemarking the service execution status as successful in the
status object. This ensures that the status marking takes into consideration any execution failures of post
hook prior to reporting the result to the calling source. Both, the pre and the post hooks accept the service
input parameters including the approval view input data as their inputs. Additionally, if the response type of the

4 Extending Service Executions | 59

4.2 Extended Application Service Extension – Extending the "appx" Layer

object returned by the primary app layer application service is other TransactionStatus, the same is also
accepted as input by the post hook.

The following sections explain the important concepts which should be understood for extending in this appx
layer.

Figure 4–12 Extended Application Service Extension - Post and Pre Hook

The following concepts are important for extending in this service provider layer:

4.2.1 Extended Application Service Extension Interface
TheOBP plug-in for eclipse generates an interface for the extension of a particular service. The interface
name is in the form I<Service_Name>ApplicationServiceSpiExt. This interface has a pair of method
definitions for eachmethod of the present in the actual service. The signatures of thesemethods are:

public void pre<Method_Name>(<Method_Parameters>) throws
FatalException;
public void post<Method_Name>(<Method_Parameters>) throws
FatalException;

An extended application service extension class has to implement this interface. The premethod of the
extension is executed before the actual servicemethod and the post method of the extension is executed
after the servicemethod.

60 | Oracle Banking Platform Host Extensibility Guide

4.2 Extended Application Service Extension – Extending the "appx" Layer

Figure 4–13 Extension Hook for Document Type Application Service Spi Ext

4.2.2 Default Implementation of Appx Extension
TheOBP plug-in for eclipse generates a default service extension for a particular service in the form of the
class Void<Service_Name>ApplicationServiceSpiExt. This class implements the aforementioned service
provider extension interface without any business logic viz. the implementedmethods are empty.

The default extension is a useful and convenient mechanism to implement the pre and / or post extension
hooks for specific methods of an application service. Instead of implementing the entire interface, one should
extend the default extension class and override only requiredmethods with the additional business logic.
Product developers DONOT implement any logic, including product extension logic, inside the default
extension classes. This is because the classes are auto-generated and reserved for product use andmay get
overwritten as part of a bulk generation process.

4 Extending Service Executions | 61

4.2 Extended Application Service Extension – Extending the "appx" Layer

Figure 4–14 Default Implementation of Appx Extension

4.2.3 Configuration
The service provider extension class to the service class mapping is defined in a property file
ServiceProviderExtensions.properties under "config/properties". Multiple extensions can be defined for a
particular service provider with the help of the extension executor. The pre and post extensions are defined in
the service layer.

Themapping is specified for a service provider extension interface's fully qualified class name to service
provider extension class's fully qualified class name in the following format:

<service_provider_interface_name>=<service_provider_extension_
class_name>,<service_provider_extesion_class_name>
Example Mapping :
config/properties/ServiceProviderExtensions.properties
Single extension configuration
com.ofss.fc.appx.content.service.ext.DocumentTypeApplicationServic
eSpi=
com.ofss.fc.appx.content.service.ext.DocumentTypeApplicationServic
eSpiExt
Multiple extension configuration
com.ofss.fc.appx.content.service.ext.DocumentTypeApplicationServic
eSpi=

62 | Oracle Banking Platform Host Extensibility Guide

4.2 Extended Application Service Extension – Extending the "appx" Layer

com.ofss.fc.appx.content.service.ext.in.DocumentTypeApplicationSer
viceExt,
com.ofss.fc.appx.content.service.ext.in.mum.DocumentTypeApplicatio
nServiceExt,
com.ofss.fc.appx.content.service.ext.in.mum.ExtendedDocumentTypeAp
plicationService,
com.ofss.fc.appx.content.service.ext.in.blr.DocumentTypeApplicatio
nServiceExt,
com.ofss.fc.appx.content.service.ext.in.blr.ExtendedDocumentTypeAp
plicationService

4.2.4 Extended Application Service Extension Executor
TheOBP plug-in for eclipse generates a service provider extensions executor interface and an
implementation class in the form of the following naming convention.

I<ApplicationServiceQualifier>ApplicationServiceSpiExtExecutor
<ApplicationServiceQualifier>ApplicationServiceSpiExtExecutor

The extended application service extension executor class, on load, creates an instance each of all the
extensions defined in the service provider extensions configuration file. If no extensions are defined for a
particular service provider, the executor creates an instance of the default extension for the appx service. The
executor also has a pair of pre and post methods for eachmethod of the actual appx service. Thesemethods
in turn delegate the call to the correspondingmethods of all the extension classes configured inside the
properties file for the service provider.

Figure 4–15 Extended Application Service Extension Executor

4 Extending Service Executions | 63

4.2 Extended Application Service Extension – Extending the "appx" Layer

Figure 4–16 Extension Factory Hook for Document Type Application Service Spi Ext

64 | Oracle Banking Platform Host Extensibility Guide

4.2 Extended Application Service Extension – Extending the "appx" Layer

Figure 4–17 Factory Implementation of Extension Hook for Document Type Application Service Spi Ext

4.2.5 Application Service "appx" Extension using Groovy
Application service extension can be implemented using Groovy. The sample code and steps for service
extension implementation using groovy is as follows:

Service extension groovy implementation class 'VoidSubmissionDocumentApplicationServiceExt'
implementing product service extension interface
'com.ofss.fc.app.origination.service.core.submissiondocument.ext.ISubmissionDocumentApplicationServic
eExt.

4 Extending Service Executions | 65

4.2 Extended Application Service Extension – Extending the "appx" Layer

Figure 4–18 Application Service Appx Extension using Groovy

Provide the fully qualified name of the above groovy implementation in flx_fw_config_all_b against the
corresponding service extension prop_id and category_id.

Figure 4–19 PROP_ID and CATEGORY_ID

Figure 4–20 SUMMARY_TEXT

Package the above implementation and add in custom library which the application is referring to and add the
groovy li in the classpath of the server which will be taken care by deployment team.

Figure 4–21 Add Groovy Library to Classpath

66 | Oracle Banking Platform Host Extensibility Guide

4.3 End-to-End Example of an Extension

4.3 End-to-End Example of an Extension
This section gives an end-to-end example of extensions written in the appx layer using the extended
application service extensions as well as app layer application service extensions. The example shall
implement this by extending the default implementation of the appx extension class
Void<ApplicationServiceQualifier>ApplicationServiceSpiExt class and app extension class
Void<ApplicationServiceQualifier>ApplicationServiceExt.

For example, Back Office -> Content -> Document Type Definition screen of the application.

This screen is used for themaintenance of Document Types defined in the application.

Figure 4–22 Maintenance of Document Types

The Create tab of the screen allows a user to create document types in the application. On click of Ok, and
after successful validation of the input entered by the user, the screen extracts the values. It calls the
DocumentTypeApplicationServiceSpi (in appx layer) and DocumentTypeApplicationService (in app layer) on
the host application to save the document type in the system.

In this example, we have addedmultiple extensions to this service of the appx layer through the extension
executor, where the update of the description is done in one of the extension and check the length of name in
another in the pre extensionmethod.

4 Extending Service Executions | 67

4.3 End-to-End Example of an Extension

Figure 4–23 Document Type Application Service Spi Ext - Appx Layer

68 | Oracle Banking Platform Host Extensibility Guide

4.3 End-to-End Example of an Extension

Figure 4–24 Doc Type Application Service Spi Ext - Appx Layer

In this example, we have addedmultiple extensions to the service of the app layer through the extension
executor. We have implemented a not null and size check on the document tags in pre hook of the app layer to
validate that document tags are sent as input in the application service.

4 Extending Service Executions | 69

4.3 End-to-End Example of an Extension

Figure 4–25 Document Type Application Service Spi Ext - App Layer

70 | Oracle Banking Platform Host Extensibility Guide

4.4 Support for Middleware Specific Tasks and Application service

Figure 4–26 Doc Type Application Service Spi Ext - App Layer

4.4 Support for Middleware Specific Tasks and Application
service
In case of OBP middleware implementation, SPI layer has ability to perform tasks before and after execution
of application service. Also, you can have customized implementation of application service.

Following are the advantages of this feature:

1. OBP signatures and Spi content will be same across all sites irrespective of OBP-middleware or
Product processor implementation.

2. No appreciable change is required when the bank migrates from OBP Middleware to a full-fledgedOBP
product processor implementation.

3. OBP Middleware signatures are self-sufficient to address integrations to non-OBP core servicing
systems and there is no need for wrapper consulting Spi class to be created.

4.4.1 Pre and Post Middleware Specific Transaction Tasks Overview
n Methods ‘performMiddlewareSpecificPreTransactionTasks’ and

‘performMiddlewareSpecificPostTransactionTasks’ is available in every spi to execute tasks.

4 Extending Service Executions | 71

4.4 Support for Middleware Specific Tasks and Application service

n Pre tasks generally includes request enrichment, pre transaction auditing, business policy validations,
post tasks generally includes alert processing, notification to external system.

n For example, in HDFC bank, in fund transfer transactions referenceNumber field is defaulted in pre
processing if request comes from net banking.

n Tasks will be performed only in case of middleware implementation.

n Response enrichment: Response fields can be populated via metadatamapping.

n Example: “com.ofss.fc.appx.party.service.core.PartyApplicationServiceSpi.fetchPartyDetails”
method look like this.

Figure 4–27 Pre and Post Middleware Specific Transaction Tasks Overview

4.4.2 Sample Configuration
Middleware task configuration is based on channel and service Id. The DB tables associated with the
execution steps are:

n FLX_FW_MW_TASKS: This table is used tomake entries for middleware specific task based on
channel and service id.

Sample entry for ‘com.ofss.fc.appx.party.service.core.PartyApplicationServiceSpi. fetchPartyDetails'
will look like, where PartyDeatilsAdapter is having several methods to perform tasks like pre business
policy, post business policy, pre and post processing.

72 | Oracle Banking Platform Host Extensibility Guide

4.4 Support for Middleware Specific Tasks and Application service

Figure 4–28 FLX_FW_MW_TASKS

n FLX_FW_MW_TASKS_DTO_DEFN: This table is used tomake entires for DTO class and DTO
fields for response enrichment purpose.

Sample entry for service name
‘com.ofss.fc.appx.party.service.core.PartyApplicationServiceSpi.fetchPartyDetails’ will look like,
where PartyInquiryResponse is response type and AdapterResponsibilityChainResponse is type of
holder dto for response enrichment.

Figure 4–29 FLX_FW_MW_TASKS_DTO_DEFN

n FLX_FW_MW_TASKS_DTO_MAP: This table is used to establishmapping between flw_fw_mw_
tasks_dto_defn columns(dto class and dto field) and task entry defined in flx_fw_mw_tasks column
(call_attr_id).

Sample entry for service id
'com.ofss.fc.appx.party.service.core.PartyApplicationServiceSpi.fetchPartyDetails (service name +
servicemethod name) task entry and response enrich dto field mappings, where field name
postExecutionResponse is havingmapping with PartyDetailsAdapter method
fetchPartyDetailsPostProcesing through cod_attr_id PARTY_DATAILS_PreProcessing.

4 Extending Service Executions | 73

4.4 Support for Middleware Specific Tasks and Application service

Figure 4–30 FLX_FW_MW_TASKS_DTO_MAP

n FLX_MD_SERVICE_ATTR: This table is used to keep entry for source and destination dto for
response enrichment purpose through column entry ref_field_defn_id.

Sample entry for service id
'com.ofss.fc.appx.party.service.core.PartyApplicationServiceSpi.fetchPartyDetails', where enriched
dto fields through adapter method having cod_attr_id like RESP_ENRICH.X.

Figure 4–31 FLX_MD_SERVICE_ATTR

n FLX_MD_GEN_ATTR_LEGACY_B: This table contains all the attributes for metadata, while making
entry for attribute which has to enriched you can append responseenrich in cod_constraint_attr_id so
you can differentiate between actual service attributes entry and response enriched entry.

Sample entry for PartyInquireResponse fields with their respective data type.

74 | Oracle Banking Platform Host Extensibility Guide

4.4 Support for Middleware Specific Tasks and Application service

Figure 4–32 FLX_MD_GEN_ATTR_LEGACY_B

4.4.3 Custom Application Service
n In SPI method createBusinessServiceInstance is used to get customized instance of application

service.

n Custom Application Service name is maintained 'CustomEntities' preferences.

n For example com.ofss.fc.appx.party.service.core.PartyApplicationServiceSpi.fetchPartyDetails can
call com.ofss.cz.hdfc.app.party.service.core.PartyApplicationService.fetchPartyDetails.

Figure 4–33 Custom Application Service

4 Extending Service Executions | 75

76 | Oracle Banking Platform Host Extensibility Guide

5 OBP Proxy Extension

OBP Proxy Extension functionality is driven by a preference named "ProxyFacadeExtension" whose key-
value properties are provided by a java class - com.ofss.fc.common.ProxyFacadeExtensionConfig. This
java class will have fully qualified name (replacing '.' With '_') of a proxy as a variable name and fully qualified
name of a target proxy as a variable value.

For example,

public final String com_ofss_fc_xyz_ProductProxyFacade =
"com.ofss.fc.osb.xyz.ProductProxyFacade"; // notice usage of '_' in
place of '.' in variable name.

Sample Existing Code:
public TransactionStatus addReferenceObject(SessionContext
sessionContext, ReferenceObjectDTO referenceObjectDTO) throws
FatalException, ServiceException {
if (logger.isLoggable(Level.FINE)) {
logger.log(Level.FINE, THIS_COMPONENT_NAME + " addReferenceObject()
Entry");
logger.log(Level.FINE, logAppServiceMessage(sessionContext));
logger.log(Level.FINE, logAppServiceMessage(referenceObjectDTO));
}
TransactionStatus returnObj = null;
try {
this.overrideProtocol
("ReferenceObjectApplicationServiceProxy.addReferenceObject");
this.populateDictionaryData(referenceObjectDTO);
if ("JSON".equals(protocol) && "APP".equals(hostApplicationLayer))
{

com.ofss.fc.app.me.service.referencedata.service.json.client.Refer
enceObjectApplicationServiceJSONClient jsonStub = new
com.ofss.fc.app.me.service.referencedata.service.json.client.Refer
enceObjectApplicationServiceJSONClient(jsonServiceUrl);
returnObj = jsonStub.addReferenceObject(sessionContext,
referenceObjectDTO);
} else if ("LOCAL".equals(protocol) && "APP".equals
(hostApplicationLayer)) {
try {
Object[] args = new Object[] { sessionContext, referenceObjectDTO
};
String stringToCompleteClassName =
"com.ofss.fc.app.me.service.referencedata.ReferenceObjectApplicati
onService";
Object obj = ReflectionHelper.getInstance().getClass
(stringToCompleteClassName).newInstance();

5 OBP Proxy Extension | 77

returnObj = (TransactionStatus) ReflectionHelper.getInstance
().invokeMethod(obj, "addReferenceObject", args);
} catch (Exception e) {
throw new ServiceException(SERVICE_NOT_AVAILABLE, e);
}
} else {
logger.log(Level.SEVERE, THIS_COMPONENT_NAME, "No valid protocol
and hostApplicationLayer combination found");
logger.log(Level.SEVERE, THIS_COMPONENT_NAME, SERVICE_NOT_
AVAILABLE);
}
this.populateTransactionStatus(returnObj);
} catch (IOException e) {
logger.log(Level.SEVERE, THIS_COMPONENT_NAME, e);
throw new ServiceException(SERVICE_NOT_AVAILABLE, e);
}
if (logger.isLoggable(Level.FINE)) {
logger.log(Level.FINE, THIS_COMPONENT_NAME + " addReferenceObject()
Exit");
logger.log(Level.FINE, logAppServiceMessage(returnObj));
}
return returnObj;
}

Sample Existing Code will be changed to:
public TransactionStatus addReferenceObject(SessionContext
sessionContext, ReferenceObjectDTO referenceObjectDTO) throws
FatalException, ServiceException {

if (logger.isLoggable(Level.FINE)) {
logger.log(Level.FINE, THIS_COMPONENT_NAME + " addReferenceObject()
Entry");
logger.log(Level.FINE, logAppServiceMessage(sessionContext));
logger.log(Level.FINE, logAppServiceMessage(referenceObjectDTO));
}
TransactionStatus returnObj = null;
try {
if (isProxyExtended(this)) {
Serializable overriddenResponse = invokeExtendedProxy(this,
sessionContext, "addReferenceObject", referenceObjectDTO);
if (overriddenResponse != null) {
if (overriddenResponse instanceof TransactionStatus) {
return (TransactionStatus) overriddenResponse;
} else {
logger.log(Level.SEVERE,
THIS_COMPONENT_NAME,

78 | Oracle Banking Platform Host Extensibility Guide

"Invalid response returned from the overridden proxy. Response
expected is an instance of TransactionStatus.");
throw new ServiceException(BranchErrorConstants.FC_OVR_RESP_INV);
}
} else {
logger.log(Level.SEVERE,
THIS_COMPONENT_NAME,
"Null response returned from the overridden proxy. Response
expected is an instance of TransactionStatus.");
throw new ServiceException(BranchErrorConstants.FC_OVR_RESP_NULL);
}
} else {
this.populateDictionaryData(referenceObjectDTO);
if ("JSON".equals(protocol) && "APP".equals(hostApplicationLayer))
{

com.ofss.fc.app.me.service.referencedata.service.json.client.Refer
enceObjectApplicationServiceJSONClient jsonStub = new
com.ofss.fc.app.me.service.referencedata.service.json.client.Refer
enceObjectApplicationServiceJSONClient(jsonServiceUrl);
returnObj = jsonStub.addReferenceObject(sessionContext,
referenceObjectDTO);
} else if ("LOCAL".equals(protocol) && "APP".equals
(hostApplicationLayer)) {
try {
Object[] args = new Object[] { sessionContext, referenceObjectDTO
};
String stringToCompleteClassName =
"com.ofss.fc.app.me.service.referencedata.ReferenceObjectApplicati
onService";
Object obj = ReflectionHelper.getInstance().getClass
(stringToCompleteClassName).newInstance();
returnObj = (TransactionStatus) ReflectionHelper.getInstance
().invokeMethod(obj, "addReferenceObject", args);
} catch (Exception e) {
throw new ServiceException(SERVICE_NOT_AVAILABLE, e);
}
} else {
logger.log(Level.SEVERE, THIS_COMPONENT_NAME, "No valid protocol
and hostApplicationLayer combination found");
logger.log(Level.SEVERE, THIS_COMPONENT_NAME, SERVICE_NOT_
AVAILABLE);
}
this.populateTransactionStatus(returnObj);
}
} catch (Throwable e) {
logger.log(Level.SEVERE, THIS_COMPONENT_NAME, e);
throw new ServiceException(SERVICE_NOT_AVAILABLE, e);
}

5 OBP Proxy Extension | 79

if (logger.isLoggable(Level.FINE)) {
logger.log(Level.FINE, THIS_COMPONENT_NAME + " addReferenceObject()
Exit");
logger.log(Level.FINE, logAppServiceMessage(returnObj));
}
return returnObj;
}

80 | Oracle Banking Platform Host Extensibility Guide

6 OBP Application Adapters

An adapter, by definition, helps the interfacing or integrating components to adapt. In software it represents a
coding discipline that helps two different modules or systems to communicate with each other and helps the
consuming side to adapt to any incompatibility of the invoked interface to work together. Incompatibility could
be in the form of input data elements which the consumer does not have and hencemight require defaulting or
the invoked interfacemight be a third party interface with a different message format requiringmessage
translation. Such functions, which do not form part of the consumer functionality, can be implemented in the
adapter layer.

In OBP, adapters are used for the above purposes as well as to achieve cleaner build time separation of
different functional product processor modules. Hence, when LoanModule needs to invoke services of Party
Module or Demand Deposit module then an adapter class owned by the Loans module will be used to ensure
that functions such as defaulting of values, mocking of an interface, and so on, are implemented in the
adapter layer thereby relieving the coremodule functionality from getting corrupted.

The design of the adapter layer is based on the Separated Interface design pattern and the access
mechanism of the adapters by modules is implemented using an Abstract Factory design pattern. The adapter
implementation is explained in the sections below as it exists in OBP.

6.1 Adapter Implementation Architecture
This section provides a detailed explanation of the adapter implementation architecture.

6.1.1 Package Diagram
The components of adapter implementation in OBP are structurally placed in separate projects to enable OBP
to achieve build time independence between functional modules of the product. The way this is achieved is
detailed in the table below and depicted with package diagram, class diagrams and an example usage
mechanism.

S
r. Project Name Description Example

1 com.ofss.fc.app.xface

DTO project.
Holds all
DTOs that are
used in the
module
application
services
request and
response
DTOs.

2 com.ofss.fc.app.adapter.internal.int
erface

Package
contains
adapter
interfaces for

com.ofss.fc.app.adapter.ep.IEventProcessing
Adapter
Abstract Factory
com.ofss.fc.app.adapter.AdapterFactory

Table 6–1 Components of Adapter Implementation

6 OBP Application Adapters | 81

6.1 Adapter Implementation Architecture

S
r. Project Name Description Example

all modules
and the
abstract
factory
implementatio
n (i.e. factory
of adapter
factories).

3 com.ofss.fc.app.adapter.impl

This project
has the
implementati
on of adapter
interfaces and
corresponding
adapter
factories.

com.ofss.fc.app.adapter.ep.
impl.EventProcessingAdapter
com.ofss.fc.app.adapter.ep.
impl.EventProcessingAdapterFactory

Hence, if Loans module (that is, com.ofss.fc.module.loan) and Party module (that is,
com.ofss.fc.module.party) are any twomodules that need to communicate, the package dependency diagram
is depicted below:

Figure 6–1 Package Diagram

The dependencies among the packages as shown in the diagram are:

82 | Oracle Banking Platform Host Extensibility Guide

6.1 Adapter Implementation Architecture

n Package com.ofss.fc.app.adapter.internal.interface only depends on DTO’s.

n Any module package depends on the Adapter interfaces and DTO’s to communicate with another
module.

n Package com.ofss.fc.app.adapter.impl depends on all the packages.

In this manner, the loans module is developed into a functional module which is structurally modular and
independent in terms of development and build from the party module and vice versa. Same is true for all
modules developed in OBP.

6.1.2 Adapter Mechanism Class Diagram
An Application Service in callingmodule calls the getAdapterFactory() method of class
AdapterFactoryConfigurator which returns an instance of an implementation of the abstract class
AdapterFactory. The class of instance is decided by the string parameter passed to themethod.

The getAdapter() method in the AdapterFactory returns an adapter instance. The class of instance is decided
by the string parameter passed to themethod.

The Application Service then uses this adapter instance to access any data from an application service within
another module.

Figure 6–2 Adapter Mechanism Class Diagram

6.1.3 Adapter Mechanism Sequence Diagram
A method in an application service gets an instance of a desired adapter factory by calling getAdapterFactory
() method of AdapterFactoryConfigurator class. The instance of the adapter factory obtained is used to call
getAdapter() method to get an instance of the adapter. This adapter instance has all themethods to
communicate to the service in another module.

6 OBP Application Adapters | 83

6.2 Examples of Adapter Implementation

Figure 6–3 Adapter Mechanism Sequence Diagram

6.2 Examples of Adapter Implementation
This section provides multiple adapter usage scenarios with code snippets. The section also has examples
describing the steps for implementing custom adapters and their factory implementation. The same
mechanism applies to all adapters which are provided by different modules in OBP. The adapter factory
additionally supports mocking of the adapter. OBP depends on the DI feature function supported by Jmock to
enablemocking of adapters.

The custom adapter, adapter factory and corresponding constants are depicted in code samples below:

6.2.1 Example 1 – EventProcessingAdapter
Code snippet to invoke amethod processActivityEvents() in alerts module from a different module:

… Constants definition …
public static final String EVENT_PROCESSING = "EVENT_PROCESSING";
public static final String MODULE_TO_ACTIVITY =
"ModuleToActivityAdapter";
… Adapter usage …
com.ofss.fc.app.adapter.IAdapterFactory adapterFactory =
AdapterFactoryConfigurator.getInstance().getAdapterFactory
(ModuleConstant.EVENT_PROCESSING);
IEventProcessingAdapter adapter = (IEventProcessingAdapter)
adapterFactory.getAdapter (EventProcessingAdapterConstant.MODULE_
TO_ACTIVITY);
adapter.processActivityEvents();

84 | Oracle Banking Platform Host Extensibility Guide

6.2 Examples of Adapter Implementation

The parameters passed in the getAdapterFactory() and getAdapter()methods are String constants denoting
instance of which class has to be returned. These string values aremaintained as constants. In the example
given below, the string constant is created in a constants file (in this example, it the constants file is
ModuleConstant).

public static final String EVENT_PROCESSING = "EVENT_PROCESSING";

An entry is made in AdapterFactories.properties corresponding to the string constant. This entry specifies the
adapter factory class corresponding to the above constant which should be instantiated and returned. The
adapter factory has the intelligence of all adapters along with adapter methods which aremocked as and
where required.

EVENT_
PROCESSING=com.ofss.fc.app.adapter.impl.ep.EventProcessingAdapterF
actory

While implementing the adapter factory, developers can choose to have a separate factory specific constants
on the basis of which tomanagemultiple adapters from the same factory. Alternatively, developers can
choose to create an adapter factory each for an adapter and its interface. The constants form the basis for
instantiating and returning of respective adapters by the factory.

The respective adapter constant and corresponding usage in the getAdaptermethod of the adapter factory
class is shown in a sample below.

… Adapter Factory Method …
public IEventProcessingAdapter getAdapter(String adapter,
NameValuePair[] nameValues) {
EventProcessingAdapter eventProcessingAdapter = null;
If (adapter.equalsIgnoreCase(EventProcessingAdapterConstant.MODULE_
TO_ACTIVITY)) {
eventProcessingAdapter = new EventProcessingAdapter();
}
return eventProcessingAdapter;
}

The adapter implementation (that is, EventProcessingAdapter) can have implementation of themethods
defined in the adapter interface it implements. This implementation is typically delegated calls to services of
themodule which is invoked by the consumingmodule. For example, theEventProcessingAdapter can
implement themethod processActivityEvents().

public void processActivityEvents(ApplicationContext
applicationContext, HashMap<String, String> activityMap) throws
FatalException {
EventProcessorApplicationService eventApplicationService =
new EventProcessorApplicationService();
eventApplicationService.processActivityEvents
(AdapterContextHelper.fetchSessionContext(), key, activityDataId);
}

6 OBP Application Adapters | 85

6.2 Examples of Adapter Implementation

6.2.2 Example 2 – DispatchAdapter
Similar to the implementation of EventProcessingAdapter, an adapter implementation is provided by product
for dispatch of an SMS alert. This adapter will always get customized during implementation depending on the
SMS gateway used by the customer at their end.

The code snippet to invoke amethod dispatchSMS() in alerts module by using the adapter interface is
depicted below.

… Constants definition …
public static final String EVENT_PROCESSING_DISPATCH = "EVENT_
PROCESSING_DISPATCH";
public static final String EP_TO_DISPATCH = "EpToDispatchAdapter";

… Adapter usage …
com.ofss.fc.app.adapter.IAdapterFactory adapterFactory =
AdapterFactoryConfigurator.getInstance().getAdapterFactory
(ModuleConstant. EVENT_PROCESSING_DISPATCH);

adapter = (IDispatchAdapter) adapterFactory.getAdapter
(EventProcessingAdapterConstant.EP_TO_DISPATCH);
adapter.dispatchSMS();

An entry inAdapterFactories.properties corresponding to theDispatchAdapterFactory would look as below.
This entry specifies the adapter factory class corresponding to the above constant which should be
instantiated and returned.

EVENT_PROCESSING_
DISPATCH=com.ofss.fc.app.adapter.impl.ep.DispatchAdapterFactory

The adapterDispatchAdapter is used in the alerts module to dispatch amessage to an SMS destination
endpoint. It has amethod called dispatchSMS(…) and the default implementation is currently to write the
SMS text generated as part of alert processing into a file called SMS.txt.

public boolean dispatchSMS(String recipientId, String
dispatchMessage) throws FatalException {
return writeToFile(recipientId, dispatchMessage);
}

The customization developer can override this method by supplying a customized implementation of the
adapter. Such custom implementation of the dispatchSMS(…)method invokes the APIs provided by the
gateway client. A sample implementation which overrides the default implementation of dispatchSMS could
look like the one below:

public boolean dispatchSMS(String recipientId, String
dispatchMessage) throws FatalException {
NewGatewayAPI newGateway = new NewGatewayAPI();
newGateway.sendMessage(recipientId,dispatchMessage);
}

86 | Oracle Banking Platform Host Extensibility Guide

6.2 Examples of Adapter Implementation

6.2.3 Example 3 - Adapter Implementation Using Groovy
Groovy adapter implementation acts as a wrapper on the product. Adapter implementation in OBP is used to
make service call from onemodule to another module.

Existing product adapter will be overridden by the new custommade adapter for Groovy. This new Groovy
adapter would contain groovy implementationmethods whichmight call groovy files internally to perform
desired functionality.

For example, for CreditCardAdapter, the following steps would have to be followed for implementation of a
custom Groovy Adapter.

Develop aCustomGroovyAdapter andCustomGroovyAdapterFactory. As a guideline, the custom adapter
should extend the existing adapter and override themethods which need to be replaced with the new
functionality. Given below are examples of customizing the adapters which are detailed above.

The respective adapter constant and corresponding usage in the getAdapter method of the adapter factory
class is shown in a sample below.

Figure 6–4 Adapter Implementation Using Groovy

OBP gives an adapter implementation for CreditCard. The adapter implements to the interface shown below.
The interfacemethod inquireCreditCardDetailsForCardNumberwould be overridden by the customization
developer while providing the actual implementation of the desired functionality.

6 OBP Application Adapters | 87

6.2 Examples of Adapter Implementation

Figure 6–5 Credit Card Adapter Implementation Using Groovy

Assume the same are named as GroovyCreditCardAdapterwhich conforms to the interface of the product
Credit Card adapter andGroovyCreditCardAdapterFactory which would return an instance of the custom
adapter. As a guideline, the custom adapter should extend the existing adapter and override themethods
which need to be replaced with new functionality.

The entry inAdapterFactories.properties corresponding to theCreditCardAdapterFactory would have to be
modified to instantiate and return theGroovyCreditCardAdapterFactory. In preferences.xml, the custom
GroovyCreditCardAdapterFactory has overridden theAdapterFactories.

Figure 6–6 Modify AdapterFactories.properties for GroovyCreditCardAdapterFactory

In preferences.xml, the following has been defined for the CustomGroovyCreditCardAdapterFactory.

Figure 6–7 Modify Preferences.xml for GroovyCreditCardAdapterFactory

88 | Oracle Banking Platform Host Extensibility Guide

6.3 Customizing Existing Adapters

Insert a record in table flx_fw_config_all_b to identify a Customized Domain Object in the followingmanner,
where the fully qualified name of the groovy adapter factory can be specified.

Insert into FLX_FW_CONFIG_ALL_B(CATEGORY_ID,PROP_ID,PROP_
VALUE,PROP_COMMENTS,OBJECT_VERSION_NUMBER,CREATED_BY,CREATION_
DATE,LAST_UPDATED_BY,LAST_UPDATED_DATE,OBJECT_STATUS_FLAG,FACTORY_
SHIPPED_FLAG) values
('GroovyAdapterFactory','Groovy','com.ofss.fc.groovy.origination.G
roovyCreditCardAdapterFactory','Class for deriving
groovy',1,'ofssuser',SYSDATE,'ofssuser',SYSDATE,'A','Y');

The implementation should be packaged and added as part of custom library which the application is referring
to and the groovy library will be added in the classpath of the server as below, which will be taken care by
deployment team.

Figure 6–8 Add Groovy Library to Classpath

6.3 Customizing Existing Adapters
If an added functionality or replacement functionality is required for an existing adapter or existingmethod in
an adapter, the customization developer has to develop a new adapter and corresponding adapter factory and
override themethod in a new custom adapter class. The custom adapter would have to override and
implement themethods which need changes.

6.3.1 Custom Adapter Example 1 – DispatchAdapter
The example of DispatchAdapter is further explained here on how to customize the same. This is followed up
by an example of customizing a party KYC status check adapter for further clarity and reference.

Depending on the client the SMS gateway they use and thus the corresponding interface to communicate with
the gateway will differ. Also, OBP by default does not support interfacing with any SMS gateway. Hence,
customization of Dispatch Adapter is essential. The following steps can be followed for implementation of a
custom DispatchAdapter.

Develop aCustomDispatchAdapter andCustomDispatchAdapterFactory. As a guideline, the custom adapter
should extend the existing adapter and override themethods which need to be replaced with the new
functionality. Given below are examples of customizing the adapters which are detailed above.

The custom adapter, adapter factory and corresponding constant are depicted as a sample below:

… CustomDispatchAdapterFactory Method …
public IDispatchAdapter getAdapter(String adapter, NameValuePair[]
nameValues) {
IDispatchAdapter adapter = null;

6 OBP Application Adapters | 89

6.3 Customizing Existing Adapters

If (adapter.equalsIgnoreCase(EventProcessingAdapterConstant.EP_TO_
DISPATCH)) {
adapter = new CustomDispatchAdapter();
}
return adapter;
}

The custom adapter implementation (that is, CustomDispatchAdapter) has the implementation of the
methods defined in the adapter interface it implements. For example, theCustomDispatchAdapterwould
implement themethod dispatchSMS() to reflect the desired functionality.

The entry inAdapterFactories.properties corresponding to theDispatchAdapterFactory can bemodified to
instantiate and return theCustomDispatchAdapterFactory. The same is shown below.

Original entry
EVENT_PROCESSING_
DISPATCH=com.ofss.fc.app.adapter.impl.ep.DispatchAdapterFactory
Changed entry
EVENT_PROCESSING_
DISPATCH=com.ofss.fc.app.adapter.impl.ep.CustomDispatchAdapterFact
ory

This changed entry specifies the custom adapter factory class corresponding to the constant which is referred
to in the product. The new entry shall ensure that theAbstractFactory instantiates and returns an instance of
CustomDispatchAdapterFactory instead of the original DispatchAdapterFactory supplied with product.

6.3.2 Custom Adapter Example 2 – PartyKYCCheckAdapter
OBP ships an adapter implementation for KYC check of a party. The adapter implements to the interface
shown below. The interfacemethod performOnlineKYCCheck can be overridden by the customization
developer while supplying the actual implementation of the desired functionality.

public interface IPartyKYCCheckAdapter {
@External(name = "KYC", info = "Perform Online KYC Check")
public abstract KYCHistoryDTO performOnlineKYCCheck(KYCHistoryDTO
kycCheckDTO) throws FatalException;
}

This adapter is integrated in product and the default implementation of the KYC check returns a successful
KYC check as shown below. This is depicted in the code snippets below.

90 | Oracle Banking Platform Host Extensibility Guide

6.3 Customizing Existing Adapters

Figure 6–9 Party KYC Status Check Adapter Interface

Figure 6–10 Default Implementation of I Party KYC Check Adapter Interface

… PartyKYCCheckAdapter performOnlineKYCCheck Method …
public KYCHistoryDTO performOnlineKYCCheck(KYCHistoryDTO
kycCheckDTO) throws FatalException {
kycCheckDTO.getAutomaticKYCDetails().setKycStatus
(KYCStatus.CONFIRMED);
kycCheckDTO.getAutomaticKYCDetails().setKycProcessStage
(KYCProcessStage.Complete);
kycCheckDTO.getAutomaticKYCDetails().setKycComments("KYC Status
maintained by Party");
…

6 OBP Application Adapters | 91

6.3 Customizing Existing Adapters

kycCheckDTO.getAutomaticKYCDetails().setKycDate(postingDate);
return kycCheckDTO;
}

In actual product implemented in production at the customer site, this is replaced with an online KYC status
check against a third-party system or the appropriate KYC agency external system interface. Hence, this
would always be a customization point during an implementation.

Depending on the client the KYC system uses, the corresponding interface to communicate will differ. Hence,
customization of the party KYC status check adapter implementation is essential. The following steps would
have to be followed for implementation of a custom PartyKYCStatusCheckAdapter.

The implementation of getAdaptermethod of KYC adapter factory with mocking support is given in the
sample below for reference.

Figure 6–11 KYC Adapter Factory with Mocking Support

… Constants definition …
public static final String PARTY_KYC_ADAPTER_FACTORY = "PARTY_KYC_
ADAPTER_FACTORY";
public static final String PARTY_KYC_ADAPTER =
"PartyKYCCheckAdapter";
… PartyKYCStatusCheckAdapterFactory getAdapter Method …
if (AdapterConstants.PARTY_KYC_ADAPTER.equals(adapter)) {
if (!isMockEnabled) {
return new PartyKYCCheckAdapter();
else {
// 1. Creation of Mockery Object
Mockery context = new Mockery();
final IPartyKYCCheckAdapter mockPartyKYCCheckAdapter = context.mock
(IPartyKYCCheckAdapter.class);
try {

92 | Oracle Banking Platform Host Extensibility Guide

6.3 Customizing Existing Adapters

context.checking(new Expectations() {
{
allowing(mockPartyKYCCheckAdapter).performOnlineKYCCheck(with(any
(KYCHistoryDTO.class)));
final KYCHistoryDTO kycCheckDTO = new KYCHistoryDTO();
KYCDetailsDTO automaticKYCDetails = new KYCDetailsDTO();
automaticKYCDetails.setKycStatus(KYCStatus.CONFIRMED);
automaticKYCDetails.setKycProcessStage(KYCProcessStage.Complete);
automaticKYCDetails.setKycComments("KYC Status maintained by
Party");
String bankCode = (String) FCRThreadAttribute.get
(FCRThreadAttribute.USER_BANK);
Date postingDate = new CoreService().fetchBankDates
(bankCode).getCurrentDate();
automaticKYCDetails.setKycDate(postingDate);
kycCheckDTO.setAutomaticKYCDetails(automaticKYCDetails);
will(returnValue(kycCheckDTO));
}
);
} catch (Exception e) {
throw new
MockAdapterException(InfraErrorConstants.MOCK_METHOD_NOT_CONFGD,
e, PartyKYCCheckAdapterFactory.class.getName());
}
return mockPartyKYCCheckAdapter;
}
}

To override the default implementation of the KYC check, the customization developer has to implement a
custom adapter and its corresponding adapter factory. Assume the same are named as
CustomPartyKYCStatusCheckAdapterwhich conforms to the interface of the product KYC check adapter
andCustomPartyKYCStatusCheckAdapterFactory which would return an instance of the custom adapter. As
a guideline, the custom adapter should extend the existing adapter and override themethods which need to be
replaced with new functionality.

Therefore, CustomPartyKYCStatusCheckAdapter can override and provide an actual implementation of the
methods defined in the default product adapter interface. For example, the adapter implements themethod
performOnlineKYCCheck() to reflect the desired functionality.

The entry inAdapterFactories.properties corresponding to thePartyKYCCheckAdapterFactory can to be
modified to instantiate and return theCustomPartyKYCCheckAdapterFactory. The same is shown below.

Original entry
PARTY_KYC_ADAPTER_
FACTORY=com.ofss.fc.app.adapter.impl.party.PartyKYCCheckAdapterFac
tory
Changed entry
PARTY_KYC_ADAPTER_FACTORY=
com.ofss.fc.app.adapter.impl.party.CustomPartyKYCCheckAdapterFacto
ry

6 OBP Application Adapters | 93

6.3 Customizing Existing Adapters

This changed entry specifies the custom adapter factory class corresponding to the constant which is referred
to in the product. The new entry shall ensure that theAbstractFactory instantiates and returns an instance of
CustomPartyKYCCheckAdapterFactory instead of the original PartyKYCCheckAdapterFactory supplied by
the product.

94 | Oracle Banking Platform Host Extensibility Guide

7 Business Policy Extension

This chapter describes how custom business policies are implemented in OBP for overriding business
validations. Business policy extensions are useful in overriding or extending the existing validations.

Figure 7–1 Business Policy Extension

The sequence diagram above shows a generic view of base implementation of business policy. Wherever
business validations are required, application service invokes createPolicyInstance() methods in the
business policy factory of the correspondingmodule. This business policy factory extends to
AbstractBusinessPolicyFactory class which is maintained at framework level. CreatePolicyInstance()
method in the business policy factory class invokes getBusinessPolicyInstance() method to look for any
custom business policy class present in the database. If there is no custom class present, it creates an
instance of base business policy class and return it to the invoking application service. Then application
service invokes the validate() method in AbstractBusinessPolicy class which in turn invokes validatepolicy()
method implemented in base business policy class. All the validation logic is written in this method and it
throws validation error if any of the validation conditions fails.

7.1 Base Implementation of Business Policy
The sequence diagram, Figure 7–1, shows a generic view of base implementation of business policy.

For more clarification let's take an example of creditCardDetailsBusinessPolicy implementation. Following
are the code snippets of different key methods:

7 Business Policy Extension | 95

7.2 Extending Business Policy

n validate() method in AbstractBusinessPolicy.java

Figure 7–2 validate() method in AbstractBusinessPolicy.java

n validatePolicy() in creditCardBusinessPolicy.java

Figure 7–3 validatePolicy() in creditCardBusinessPolicy.java

7.2 Extending Business Policy
Custom implementation of business policy is achieved by defining a preference for customBusinessPolicy in
preferences.xml which represents a query to the FLX_FW_CONFIG_ALL_B table in the database. To

96 | Oracle Banking Platform Host Extensibility Guide

7.3 Configuration

override a base business policy, class name of the custom business policy with the policy code is inserted
into the table. As a guideline, the custom business class should extend the product base business policy, to
inherit the product base implementation. Base code already handles the fetching of custom class, if any, from
the table. If customization of a policy is not required then query returns null and base business policy is
implemented.

7.3 Configuration
For custom business policy implementation following configuration steps are required to be followed:

1. Add a preference for custom business policy in preferences.xml.

Figure 7–4 Add a preference for custom business policy in preferences.xml

2. Add an entry in FLX_FW_CONFIG_ALL_B table in database with custom class name and policy code.

INSERT INTO FLX_FW_CONFIG_ALL_B (PROP_ID,CATEGORY_ID,PROP_
VALUE,FACTORY_SHIPPED_FLAG,PROP_COMMENTS,SUMMARY_TEXT,CREATED_
BY,CREATION_DATE,LAST_UPDATED_BY,LAST_UPDATED_DATE,OBJECT_
STATUS_FLAG,OBJECT_VERSION_NUMBER) VALUES ('FC_CC_BP_
001','CustomBusinessPolicy','com.ofss.fc.module.originationGr
oovy.CreditCardDetailsBusinessPolicyGroovy','Y','This is
accessed from
AbstractBusinessPolicyFactory.getCustomBusinessPolicyNameTDS'
,'','ofssuser',to_date('09/05/2016 11:25:30', 'dd/mm/rrrr
hh:mi:ss'),'ofssuser',to_date('09/05/2016 11:25:30',
'dd/mm/rrrr hh:mi:ss'),'A',1);

7.4 Extensions Using Groovy
Groovy is a lightweight, dynamically typed object-oriented programming language. It has got similarities with
java and can run on jvm platform. Groovy class provides the functionalities for interacting with a java program
so can be efficiently used as extensions for customization purpose.

In addition to the configurations mentioned above, add the groovy-all-2.3.10.jar in the classpath of weblogic
server in setDomain.sh file, which will be done by deployment team. No other specific configuration is
needed.

Following is the snippet of a groovy custom business policy class implemented for creditCardDetails
validations:

7 Business Policy Extension | 97

7.4 Extensions Using Groovy

Figure 7–5 Extensions using Groovy

98 | Oracle Banking Platform Host Extensibility Guide

8 OBP Extensibility Support Using Eclipse
Plugin

OBP Eclipse Plugin has been updated to support OBP Extensibility features like run-time inclusion of
Application Service SPI Extensions and Business Policy Extensions in the form of uploadable Groovy files.

8.1 Configure Eclipse Preferences for OBP Service Plugin
Following are the steps to configure eclipse preferences for OBP service plugin:

1. Click onWindows>Preferences.

Figure 8–1 Java Eclipse - Select Preferences

8 OBP Extensibility Support Using Eclipse Plugin | 99

8.1 Configure Eclipse Preferences for OBP Service Plugin

Figure 8–2 Preferences Dialog Box - OBP Service Plugin

100 | Oracle Banking Platform Host Extensibility Guide

8.1 Configure Eclipse Preferences for OBP Service Plugin

Figure 8–3 Folder Selection

2. The parameter Temporary Project has to be configured to point to the base project where the Groovy
Extension Files have to be saved.

8 OBP Extensibility Support Using Eclipse Plugin | 101

8.1 Configure Eclipse Preferences for OBP Service Plugin

Figure 8–4 Browse for Folder

3. The parameter “MWLib Path” has to be configured to point to the directory where all the OBP Host jar
files have been kept.

102 | Oracle Banking Platform Host Extensibility Guide

8.2 Support for Application Service Provider Extension

Figure 8–5 Configuring MWLib Path Parameter

4. The rest of the OBP Service Plugin parameters can be configured as usual.

8.2 Support for Application Service Provider Extension

8.2.1 Generate Application Service Provider Extension
1. The parameter Temporary Project has been configured to point to the base project where the Groovy

Extension Files have to be saved.

2. Right click on this project and select Oracle Banking Platform > Generate Service Provider Extension.

8 OBP Extensibility Support Using Eclipse Plugin | 103

8.2 Support for Application Service Provider Extension

Figure 8–6 Java Eclipse - Select Generate Service Provider Extension

The below wizard appears with a list of Base SPI Files.

104 | Oracle Banking Platform Host Extensibility Guide

8.2 Support for Application Service Provider Extension

Figure 8–7 Service Extension Configuration

3. Enter a search keyword to filter the list for the required Base SPI file.

8 OBP Extensibility Support Using Eclipse Plugin | 105

8.2 Support for Application Service Provider Extension

Figure 8–8 Enter Search Keyword to Filter Base SPI File

4. Select the filtered Base SPI file from the list such that it appears as the input for Base SPI file.

106 | Oracle Banking Platform Host Extensibility Guide

8.2 Support for Application Service Provider Extension

Figure 8–9 Select Base SPI File

5. Appropriately set values for the extension class name and package.

8 OBP Extensibility Support Using Eclipse Plugin | 107

8.2 Support for Application Service Provider Extension

Figure 8–10 Set Extension Class Name and Package

6. Click onGenerate Extension Code.

108 | Oracle Banking Platform Host Extensibility Guide

8.2 Support for Application Service Provider Extension

Figure 8–11 Click Generate Extension Code

7. The code gets generated with the extension hooks.

8 OBP Extensibility Support Using Eclipse Plugin | 109

8.2 Support for Application Service Provider Extension

Figure 8–12 Extension Code Generated with Extension Hooks

8. Click on Save Extension and Finish.

110 | Oracle Banking Platform Host Extensibility Guide

8.2 Support for Application Service Provider Extension

Figure 8–13 Save Extension and Finish

9. The extension gets saved in the project created to contain the Extension classes generated through
the plugin. You can add all the code required in the pre and post hooks for extensibility of the base
Application Service.

8 OBP Extensibility Support Using Eclipse Plugin | 111

8.2 Support for Application Service Provider Extension

8.2.2 Configure OBP Extensibility Server Explorer - View
1. In eclipse click onWindow > Show View > Other.

Figure 8–14 Java Eclipse

2. Click onOracle Banking Platform > Server Explorer.

112 | Oracle Banking Platform Host Extensibility Guide

8.2 Support for Application Service Provider Extension

Figure 8–15 Click Server Explorer

3. The ServerExplorer view tab opens up.

8 OBP Extensibility Support Using Eclipse Plugin | 113

8.2 Support for Application Service Provider Extension

Figure 8–16 Server Explorer View tab

4. Right click on Server Explorer and click Create Server Connection.

114 | Oracle Banking Platform Host Extensibility Guide

8.2 Support for Application Service Provider Extension

Figure 8–17 Create Server Connection

5. Provide values for Connection, name, ip, and port and test connection and click ok.

8 OBP Extensibility Support Using Eclipse Plugin | 115

8.2 Support for Application Service Provider Extension

Figure 8–18 Provide Details for Server Configuration

6. The configured server appears as a child of Server Explorer. The configured server also lists all
Application Service SPI Extensions and all Business Policy Extensions and all Adapter Extensions
already deployed in server.

116 | Oracle Banking Platform Host Extensibility Guide

8.2 Support for Application Service Provider Extension

Figure 8–19 Server Configured

8 OBP Extensibility Support Using Eclipse Plugin | 117

8.2 Support for Application Service Provider Extension

8.2.3 Exposed Webservice for Application Service SPI Extensions

Figure 8–20 ExtensionApplicationServiceSpi

ExtensionApplicationServiceSpi is the web service that exposes the web services to add service provider
extensions, fetch service provider extensions and delete service provider extensions. These services are
used by the eclipse plugin to deploy extensions, fetch extensions and undeploy extensions at runtime.

8.2.4 Deploy Application Service SPI to Server
Perform the following steps to deploy the application service SPI to server:

1. Right Click on the Extension Class in the Package Explorer or the Code Editor and click onOracle
Banking Platform > Deploy Service Provider Extension To Server.

118 | Oracle Banking Platform Host Extensibility Guide

8.2 Support for Application Service Provider Extension

Figure 8–21 Java Eclipse

2. It is compulsory to have selected the server under Server Explorer in which the deployment has to
occur.

8 OBP Extensibility Support Using Eclipse Plugin | 119

8.2 Support for Application Service Provider Extension

Figure 8–22 Select Server Explorer to Deploy Extension

3. The Extension gets deployed in the server.

120 | Oracle Banking Platform Host Extensibility Guide

8.2 Support for Application Service Provider Extension

Figure 8–23 Extension Deployed

4. The Extension gets deployed in the server and appears under the appropriate child of Server configured
under Server Explorer.

8 OBP Extensibility Support Using Eclipse Plugin | 121

8.2 Support for Application Service Provider Extension

8.2.5 Database Inserts: Application Service SPI Extension
Deployment

Figure 8–24 Application Service SPI Extension Deployment - Single Record View

122 | Oracle Banking Platform Host Extensibility Guide

8.2 Support for Application Service Provider Extension

Figure 8–25 Application Service SPI Extension Deployment - Single Record View

8 OBP Extensibility Support Using Eclipse Plugin | 123

8.2 Support for Application Service Provider Extension

Figure 8–26 Application Service SPI Extension Deployment - View Value

124 | Oracle Banking Platform Host Extensibility Guide

8.2 Support for Application Service Provider Extension

Figure 8–27 Application Service SPI Extension Deployment - Single Record View

8 OBP Extensibility Support Using Eclipse Plugin | 125

8.2 Support for Application Service Provider Extension

8.2.6 Fetching Deployed Application Service SPI Extension

Figure 8–28 Java Eclipse - Fetching Deployed Application Service SPI Extension

1. For the purpose of fetching a deployed Extension from the Server, you can click on the appropriate
Extension under the appropriate child under Server Explorer.

126 | Oracle Banking Platform Host Extensibility Guide

8.2 Support for Application Service Provider Extension

Figure 8–29 Click on Extension under Server Explorer

2. The extension gets saved in the project created to contain the Extension classes generated through
the plugin. Also the Extension code opens up in the Code Editor.

8.2.7 Undeploying Application Service SPI Extension
Perform the following steps for undeploying application service SPI extension:

8 OBP Extensibility Support Using Eclipse Plugin | 127

8.2 Support for Application Service Provider Extension

Figure 8–30 Java Eclipse - Undeploying Application Service SPI Extension

1. For the purpose of undeploying the Extension from the Server, you right click on the specific Extension
under the appropriate child of the Server configured under Server Explorer.

128 | Oracle Banking Platform Host Extensibility Guide

8.2 Support for Application Service Provider Extension

Figure 8–31 Click on Extension under Server Explorer

2. The specific Extension under the appropriate child of the Server configured under Server Explorer
disappears and gets undeployed from the Server.

8.2.8 Case of Multiple Application Service SPI Extensions
1. You can choose to addmultiple Groovy extensions for the same Application Service SPI. These will

appear in the order in which they were added under Server Explorer>Server>Service Provider
Extensions>.

8 OBP Extensibility Support Using Eclipse Plugin | 129

8.2 Support for Application Service Provider Extension

Figure 8–32 Adding multiple Groovy extensions for the same Application Service SPI

8.2.9 Inclusion of Groovy Extension in Actual Code Flow
1. The Application Service SPI Ext Executor derives a list of Application Service SPI Extensions through

ServiceProviderExtensionFactory.getServiceProviderExtensions(<ApplicationServiceSpiName>).

Figure 8–33 ServiceProviderExtensionFactory.getServiceProviderExtensions

Subsequently the Groovy Extensions are compiled and included in the Code Flow.

130 | Oracle Banking Platform Host Extensibility Guide

8.3 Support for Business Policy Extension

Figure 8–34 Groovy Extensions compiled and included in Code Flow

8.3 Support for Business Policy Extension

8.3.1 Generate Business Policy Extension
1. The parameter Temporary Project has been configured to point to the base project where the Groovy

Extension Files have to be saved.

2. Right click on this project and select Oracle Banking Platform > Generate Business Policy Extension.

8 OBP Extensibility Support Using Eclipse Plugin | 131

8.3 Support for Business Policy Extension

Figure 8–35 Generate Business Policy Extension

132 | Oracle Banking Platform Host Extensibility Guide

8.3 Support for Business Policy Extension

Figure 8–36 Business Policy Extension Configuration

3. The above wizard appears with a list of Business Policy Files.

8 OBP Extensibility Support Using Eclipse Plugin | 133

8.3 Support for Business Policy Extension

Figure 8–37 Select Base Business Policy file

4. Select the filtered Base Business Policy file from the list such that it appears as the input for Base
Business Policy file.

5. Appropriately set values for the Extension Class Name and package.

134 | Oracle Banking Platform Host Extensibility Guide

8.3 Support for Business Policy Extension

Figure 8–38 Enter Extension Class Name and Package

6. Click onGenerate Busness Policy Extension Code.

7. The code gets generated with the base business policy methods.

8. Click on Save Policy Extension and Finish.

8 OBP Extensibility Support Using Eclipse Plugin | 135

8.3 Support for Business Policy Extension

Figure 8–39 Click Save Policy Extension and Finish

9. The extension gets saved in the project created to contain the Extension classes generated through
the plugin. You can add all the code required in the basemethods for extensibility of the base Business
Policy.

136 | Oracle Banking Platform Host Extensibility Guide

8.3 Support for Business Policy Extension

8.3.2 Exposed Webservice for Business Policy Extensions

Figure 8–40 Business Policy Extension Application ServiceSpi

Business Policy Extension Application ServiceSpi is the web service that exposes the web services to add
business policy extensions, fetch business policy extensions and delete business policy extensions.These
services are used by the eclipse plugin to deploy extensions, fetch extensions and undeploy extensions at
runtime.

8 OBP Extensibility Support Using Eclipse Plugin | 137

8.3 Support for Business Policy Extension

8.3.3 Deploy Business Policy Extension to Server

Figure 8–41 Click Deploy Business Policy Extension To Server

1. Right Click on the Extension Class in the Package Explorer or the Code Editor and click onOracle
Banking Platform > Deploy Business Policy Extension To Server.

2. It is compulsory to have selected the Server under Server Explorer in which the deployment has to
occur.

138 | Oracle Banking Platform Host Extensibility Guide

8.3 Support for Business Policy Extension

Figure 8–42 Select Server

3. The extension gets deployed in the server.

8 OBP Extensibility Support Using Eclipse Plugin | 139

8.3 Support for Business Policy Extension

Figure 8–43 Extension Deployed on Server

4. The Extension gets deployed in the server and appears under the appropriate child of Server configured
under Server Explorer.

140 | Oracle Banking Platform Host Extensibility Guide

8.3 Support for Business Policy Extension

8.3.4 Database Inserts: Business Policy Extension Deployment

Figure 8–44 Business Policy Extension Deployment - Single Record View

8 OBP Extensibility Support Using Eclipse Plugin | 141

8.3 Support for Business Policy Extension

Figure 8–45 Business Policy Extension Deployment - Single Record View

142 | Oracle Banking Platform Host Extensibility Guide

8.3 Support for Business Policy Extension

Figure 8–46 Business Policy Extension Deployment - View Value

8 OBP Extensibility Support Using Eclipse Plugin | 143

8.3 Support for Business Policy Extension

Figure 8–47 Business Policy Extension Deployment - Single Record View

144 | Oracle Banking Platform Host Extensibility Guide

8.3 Support for Business Policy Extension

8.3.5 Fetching Deployed Business Policy Extension

Figure 8–48 Fetching Deployed Business Policy Extension

1. For the purpose of fetching a deployed Extension from the Server, you can click on the appropriate
Extension under the appropriate child under Server Explorer.

8 OBP Extensibility Support Using Eclipse Plugin | 145

8.3 Support for Business Policy Extension

Figure 8–49 Click Extension under Server Explorer

2. The extension gets saved in the project created to contain the Extension classes generated through
the plugin. Also the Extension code opens up in the Code Editor.

146 | Oracle Banking Platform Host Extensibility Guide

8.3 Support for Business Policy Extension

8.3.6 Undeploying Business Policy Extension from Server

Figure 8–50 Undeploying the Extension from Server

1. For the purpose of undeploying the Extension from the Server, you right click on the specific Extension
under the appropriate child of the Server configured under Server Explorer.

8 OBP Extensibility Support Using Eclipse Plugin | 147

8.3 Support for Business Policy Extension

Figure 8–51 Undeploying the Extension from Server

2. The specific Extension under the appropriate child of the Server configured under “Server Explorer”
disappears and gets undeployed from the Server.

8.3.7 Inclusion of Groovy Extension in Actual Code Flow
1. Whenever an AbstractBusinessPolicyFactory child class invokes getBusinessPolicyInstance()

method the parent class correspondingmethod gets invoked that deciphers the appropriate Business
Policy Instance.

148 | Oracle Banking Platform Host Extensibility Guide

8.3 Support for Business Policy Extension

Figure 8–52 AbstractBusinessPolicyFactory.java

Figure 8–53 AbstractBusinessPolicyFactory.java

2. The name of this Business Poicy Class is then passed to “getAdapterExtensions(String
extensionKey)” which then gets the extension name from FLX_FW_CONFIG_ALL_B based on the
CATEGORY_ID=”BusinessPolicyExtensions” and PROP_ID=<Business Policy Class Name>. This
Extension is then used to get the Groovy Source code which is then parsed and compiled and returned
as the appropriate Business Policy Class.

8 OBP Extensibility Support Using Eclipse Plugin | 149

8.4 Support for Adapter Extension

8.4 Support for Adapter Extension

8.4.1 Generate Adapter Extension
1. The parameter Temporary Project has been configured to point to the base project where the Groovy

Extension Files have to be saved.

2. Right click on this project and select Oracle Banking Platform > Generate Adapter Extension.

Figure 8–54 Generate Adapter Extension

150 | Oracle Banking Platform Host Extensibility Guide

8.4 Support for Adapter Extension

Figure 8–55 Adapter Extension Configuration

3. The above wizard appears with a list of Adapter Files.

8 OBP Extensibility Support Using Eclipse Plugin | 151

8.4 Support for Adapter Extension

Figure 8–56 Adapter Extension Configuration

4. Select the filtered Base Business Policy file from the list such that it appears as the input for Base
Adapter file.

5. Appropriately set values for the Extension Class Name and package.

152 | Oracle Banking Platform Host Extensibility Guide

8.4 Support for Adapter Extension

Figure 8–57 Enter Extension Class Name and Package

6. Click onGenerate Adapter Extension Code. The code gets generated with the base adapter methods.

7. Click on Save Adapter Extension and Finish.

8 OBP Extensibility Support Using Eclipse Plugin | 153

8.4 Support for Adapter Extension

Figure 8–58 Save Adapter Extension and Finish

8. The extension gets saved in the project created to contain the Extension classes generated through
the plugin. You can add all the code required in the basemethods for extensibility of the base Business
Policy.

154 | Oracle Banking Platform Host Extensibility Guide

8.4 Support for Adapter Extension

8.4.2 Exposed Webservice for Adapter Extensions

Figure 8–59 Adapter Extension Application Service Spi

Adapter Extension Application Service Spi is the web service that exposes the web services to add adapter
extensions, fetch adapter extensions and delete adapter extensions. These services are used by the eclipse
plugin to deploy extensions, fetch extensions and undeploy extensions at runtime.

8 OBP Extensibility Support Using Eclipse Plugin | 155

8.4 Support for Adapter Extension

8.4.3 Deploy Adapter Extension to Server

Figure 8–60 Deploy Business Policy Extension To Server

1. Right Click on the Extension Class in the Package Explorer or the Code Editor and click onOracle
Banking Platform > Deploy Business Policy Extension To Server.

2. It is compulsory to have selected the Server under Server Explorer in which the deployment has to
occur.

156 | Oracle Banking Platform Host Extensibility Guide

8.4 Support for Adapter Extension

Figure 8–61 Select Server

3. The Extension gets deployed in the server.

8 OBP Extensibility Support Using Eclipse Plugin | 157

8.4 Support for Adapter Extension

Figure 8–62 Extension Deployed

4. The Extension gets deployed in the server and appears under the appropriate child of Server configured
under Server Explorer.

158 | Oracle Banking Platform Host Extensibility Guide

8.4 Support for Adapter Extension

8.4.4 Database Inserts: Adapter Extension Deployment

Figure 8–63 Adapter Extension Deployment - Single Record View

8 OBP Extensibility Support Using Eclipse Plugin | 159

8.4 Support for Adapter Extension

Figure 8–64 Adapter Extension Deployment - Single Record View

160 | Oracle Banking Platform Host Extensibility Guide

8.4 Support for Adapter Extension

Figure 8–65 Adapter Extension Deployment - View Value

8 OBP Extensibility Support Using Eclipse Plugin | 161

8.4 Support for Adapter Extension

Figure 8–66 Adapter Extension Deployment - Single Record View

162 | Oracle Banking Platform Host Extensibility Guide

8.4 Support for Adapter Extension

8.4.5 Fetching Deployed Adapter Extension

Figure 8–67 Fetching Deployed Adapter Extension

1. For the purpose of fetching a deployed Extension from the Server, you can click on the appropriate
Extension under the appropriate child under Server Explorer.

8 OBP Extensibility Support Using Eclipse Plugin | 163

8.4 Support for Adapter Extension

Figure 8–68 Click Extension from Server

2. The extension gets saved in the project created to contain the Extension classes generated through
the plugin. Also the Extension code opens up in the Code Editor.

164 | Oracle Banking Platform Host Extensibility Guide

8.4 Support for Adapter Extension

8.4.6 Undeploying Adapter Extension from Server

Figure 8–69 Undeploying Extension from Server

1. For the purpose of undeploying the Extension from the Server, you right click on the specific Extension
under the appropriate child of the Server configured under Server Explorer.

8 OBP Extensibility Support Using Eclipse Plugin | 165

8.4 Support for Adapter Extension

Figure 8–70 Extension Undeployed

2. The specific extension under the appropriate child of the Server configured under “Server Explorer”
disappears and gets undeployed from the Server.

166 | Oracle Banking Platform Host Extensibility Guide

8.4 Support for Adapter Extension

8.4.7 Inclusion of Groovy Extension in Actual Code Flow

Figure 8–71 Groovy Extension in Code Flow

1. Whenever an AdapterFactory child class invokes getAdapter(String adapter) method the parent class’
correspondingmethod gets invoked that deciphers the appropriate Adapter Class.

8 OBP Extensibility Support Using Eclipse Plugin | 167

8.4 Support for Adapter Extension

Figure 8–72 AdapterFactory

2. The name of this Adapter Class is then passed to “getAdapterExtensions(String extensionKey)” which
then gets the extension name from FLX_FW_CONFIG_ALL_B based on the CATEGORY_
ID=”AdapterExtensions” and PROP_ID=<Adapter Class Name>. This Extension is then used to get
the Groovy Source code which is then parsed and compiled and returned as the appropriate Adapter
Class.

168 | Oracle Banking Platform Host Extensibility Guide

9 Batch Framework Extensions

Most of the enterprise applications require bulk processing of records to perform business operations in real-
time environments. These business operations include complex processing of large volumes of information
that aremost efficiently processed with minimal or no user interaction. Such operations would typically
include time-based events (for example, month-end calculations, notices or correspondence), periodic
application of complex business rules processed repetitively across very large data sets (for example, rate
adjustments). All such scenarios form a part of batch processing. Thus, batch processing is used to process
billions of records for enterprise applications.

There are few primary categories in OBP Batch Processes:

n Beginning of Day (BOD)

n Cut-off

n End of Day (EOD)

n Internal EOD

n Statement Generation

n Customer Communication

Additional categories can also be configured as per the requirement.

9.1 Typical Business Day in OBP
The following graphic describes a typical business day in OBP:

9 Batch Framework Extensions | 169

9.2 Overview of Categories

Figure 9–1 Business Day in OBP

9.2 Overview of Categories
This topic describes the categories in OBP Batch Processes.

9.2.1 Beginning of Day (BOD)
The activities for a new day of the bank / branch begin with the BOD (beginning of day). This is a batch
process which executes a group of shells (programs) which are required to be performed before the normal
day-to-day operations at the branch can be started. The BOD typically includes

n TD Maturity and Interest Processing

n Standing instructions execution (Based on setup)

n Loan Charging, Drawdown and Auto-Disbursement

n Value date processing of cheques (Based on the setup)

n Reports Generation

9.2.2 Cut-off
Cut-off is a process that sets the trigger for modules to start logging transactions with a new date.

It alsomarks cut-off for the channel transactions.

170 | Oracle Banking Platform Host Extensibility Guide

9.3 Batch Framework Architecture

9.2.3 End of Day (EOD)
Once all the operations for the current working date of the branch are completed and all the transactions are
posted the Branch EOD batch is started. This batch executes a group of shells (programs) which are required
to be performed before the Business Date of the branch is changed to the next working date. It marks the end
of a business day. The EOD typically includes:

n DDA Sweep-Out Instruction

n Loan Rate Change

n Term Deposit Lien Expiry and Interest Capitalization

n DDA Balance Change, Rate Change, Interest Capitalization and Settlement

n Account and Party Asset Classification

n Loan Interest Computation

n Accounting Verification

9.2.4 Internal EOD
This category performs all the activities which do not affect the customer account but are related to bank
internal processing. Internal EOD typically includes:

n Interest Accrual and Compounding

n Deferred Ledger Balance Update

n Balance Period Creation

n Financial Closure

9.2.5 Statement Generation
This category performs different statement generation activities on themonthly or yearly basis. It typically
includes:

n Periodic PL balance history Generation

n CASA Statement Generation

n Loan Statement Generation

n TD Statement Generation

9.2.6 Customer Communication
This category performs different communications which needs to be done with the customer on the regular
basis. It typically includes:

n Regular Account Balance Notification On Specified Date

9.3 Batch Framework Architecture
This section describes the architecture of the Batch Framework.

9 Batch Framework Extensions | 171

9.3 Batch Framework Architecture

9.3.1 Static View
The static view of batch framework shows the architecturally significant classes included in the batch
framework being developed. It is in line with the overall design and development guidelines and principles.
This section shows the class diagrams representing the static model of the batch framework emphasizing the
static structure of the system using objects, attributes and relationships.

Class Diagram

The following diagram depict details about the different classes of the code which are involved in the batch
execution.

172 | Oracle Banking Platform Host Extensibility Guide

9.3 Batch Framework Architecture

Figure 9–2 Batch Framework Architecture - Static View

9.3.2 Dynamic View
This section emphasizes the dynamic behavior of the system by showing collaborations among objects and
changes to the internal states of objects.

Sequence Diagram

9 Batch Framework Extensions | 173

9.3 Batch Framework Architecture

The following diagram depicts the sequence diagram for Batch framework. It provides details about the flow of
control during the batch execution.

Figure 9–3 Dynamic View Sequence Diagram

State Diagram of a Shell

When the end of day batch starts, every shell is reset to Not Started. During the course of the batch, the shell
status will change till the shell is completed. The transitions of shell execution are explained in the state
diagram below:

174 | Oracle Banking Platform Host Extensibility Guide

9.4 Batch Framework Components

Figure 9–4 State Diagram of a Shell

9.4 Batch Framework Components
This section describes the batch framework components.

9.4.1 Category Components
This section describes the category components.

CategoryListenerMDB

This MDB listens to the FCBBatchRequestQ and delegate to CategoryHelper for further processing.

CategoryHelper

This class starts or restarts a category depending upon the request received.

9 Batch Framework Extensions | 175

9.4 Batch Framework Components

It will validate the input xml Request, validate the prerequisites for starting/restarting a category, get the list of
shells that can be initiated on a category start/shell completion, prepare the Batch XMLMessage for each of
the shell and send amessage to FCBBatchShellQ for each Shell to be started.

It also services requests initiation of the next shell after a shell has been successfully completed.

9.4.2 Shell Components
This section describes the shell components.

ShellListenerMDB

This MDB listens on ShellRequestQ and delegate to ShellProcessHelper for processing.

ShellProcessHelper

This class validates the input request and calls appropriate batch handler to start the shell. It will call:

n BatchFrameworkShellHelper for non-report Java Bean Based Shell

n ProcedureShellHelper for Procedure based shell

n BatchReportShellBean for report shells

n BatchReportRestartShellBean for report epilogue shells

After successful completion of shell, it sends an ’InitiateNext’ request to the CategoryHelper to initiate
subsequent shells. If the shell is aborted, this class will mark the shell as aborted.

ShellRootHelper

This is the base class which is required for each shell processing. It Implements the IBatchHandler Interface.
All the batch handlers extend this class.

This class contains the commonmethods which need to invoked for processing each shell for example,
method to parse the request, methods used to acquire and release lock for shell, method to initiate the shell
andmark the shell as complete upon successful completion.

BatchFrameworkShellHelper

This SSB extends ShellRootHelper. It is responsible for executing non report Java Bean based shells. This
class will validate the process date of the request, prepare a BatchContext entity encapsulating the batch run
details and call BatchJobHandler to run the shell.

BatchJobHandler

This class is responsible for putting the stream requests in queue. It will get the Batch Processes (1 Batch
Process per stream) by calling BatchProcessManager and post them to the Stream Queue.

After posting the stream requests, it will start polling on the status of the streams till either all streams are
completed or any one of the streams is aborted. If the streams are completed, it will return ’Success’ as the
status else it will return the status as ’Failure’.

BatchProcessManager

This component acts as amanager for the complete batch process. The functionalities include finding the
pending batch processes and creating batch processes and returning the list of batch processes to be
initiated.

If the shell is being restarted, this class will fetch the aborted batch processes, reset them and return list of
reset Batch Processes to be re-initiated.

176 | Oracle Banking Platform Host Extensibility Guide

9.4 Batch Framework Components

If the shell is being started, it will call BatchJobHelper to populate the driver table and create the batch
processes and return the list of batch processes to be initiated.

BatchJobHelper

This class is responsible for populating the driver table and creating the Batch Processes.

ProcedureShellHelper

This class is used to process DB procedure based shells. This class will fetch the procedure to be executed
from the ’flx_batch_job_shell_master’ table and execute it.

BatchReportShellBean

This class is responsible initiating the generation of reports. It will call ReportJobRequestor to fetch the
reports to be generated, prepare the generation request and post the requests to the Report Queue.

After the successful posting of requests, the report shell will bemarked as complete. The report generation
will be done in parallel to the execution of subsequent shells.

BatchReportRestartShellBean

This class is used for the epilogue shell in each category which has reports generation.

This class will check whether all the reports have been generated or not. This class will call
ReportJobRequestor which will poll on the status of the reports till all the reports are completed or aborted.

If the aborted reports are to be regenerated, it will also post themessages to regenerate aborted reports.

9.4.3 Stream Components
This section describes the stream components.

StreamListenerMDB

This MDB is responsible for listening to the stream queue. It delegates the processing to
StreamProcessHelper.

StreamProcessHelper

This class is responsible for starting the batch process. It calls RecoverableBatchProcess to start the
process.

BatchProcess

This component is the base class for processing the batch process. The StreamProcessHelper calls this
class for starting the batch process. This class will initialize the BatchShellResult, clear the
StaticCacheRegistry (if the BatchProcess is the first BatchProcess of a category), process the
BatchProcess, retry the processing of the BatchProcess (if the earlier failure was due to StaleState or
PKDuplication) and finalize the BatchShellResult status depending on success/failure.

The call to process a batch request is routed through this class to the subclass.

RecoverableBatchProcess

This component processes the batch data and inherits the BatchProcess class. This class will process all the
records in the sequence number range specified in the BatchShellResult.

This class will fetch the records from the driver table and process them sequentially.

To execute each record, it will call servicemethod of the service class stored in the BatchShellDetails table
using reflection. If there is any exception, it will call the exception handler method of the service class if the
service class implements the IBatchExceptionHandler interface.

9 Batch Framework Extensions | 177

9.4 Batch Framework Components

It will commit the transaction at the end of commit size. If all the records are executed successfully, the
stream is marked as complete. If any record fails, the stream is marked as aborted.

Recoverable Batch Process can handle the failure of a record in the following ways depending upon the set
up.

n Recoverable Batch Process with Recovery ModeON: When a record fails, the previous records in the
commit size will be committed andmarked as success, the failed record will bemarked as failed and
the execution of batch process resumes from the record after the failed record. Hence in this mode all
the successful records are committed and the failed records aremarked as failed.

n Recoverable Batch Process with Recovery ModeOFF: In this mode, when a record fails the earlier
records in the commit size aremarked as skipped for the current run, the failed record is marked as
failed and execution of batch process resumes from the record after the failed record.

Simple Batch Process

While executing the shell as a Simple Batch Process, the stream will be executed till the first failed record.
When a record fails, the previous records in the commit size will be committed and the shell will be aborted.
The records after the failed record will be skipped in the current run.

SimpleBatchProcess class is no longer used

The functionality of SimpleBatchProcess is executed through RecoverableBatchProcess by specifying the
FLG_PROCESS_TYPE as "SBP" in the flx_batch_job_shell_dtls table. In the flx_batch_job_shell_dtls table:

n FLG_PROCESS_TYPE column indicates whether it is RecoverableBatchProcess (RBP) or
SimpleBatchProcess (SBP).

n FLG_RECOVERY_MODE column indicates whether the Recovery mode is ON or OFF

n Simple Batch Process should have Recovery Mode as ON.

For Example:

Total Number of records =20;
Commit Frequency = 10
Failed Records = 5, 18

The shell will be executed as follows:

n Recoverable Batch Process with Recovery ModeON:

l Records 5 and 18 will be skipped and rest all the records will be committed successfully

n Recoverable Batch Process with Recovery ModeOFF:

l Records 1 - 5 will be skipped.

l Records 6 - 15 will be committed successfully.

l Records 16-18 will be skipped

l Records 19 - 20 will be committed successfully

n Simple Batch Process:

l Records 1- 4 will be committed successfully. Rest of the records will be skipped.

178 | Oracle Banking Platform Host Extensibility Guide

9.5 Batch Configuration

9.4.4 Database Components
The Database Server houses the following components:

Batch Framework
Tables Description

flx_batch_job_
category_master

This table contains details of each of the category per branch group. This table
contains the description, last run date and themulti run flag for the category. The
status, state flag and the last Run Date for each category is maintained and
validated from this table during batch run.

flx_batch_job_grp_
category

This table contains the previous, current and the next run date for each category
per branch group.

flx_batch_job_
category_depend This table contains the category dependencies.

flx_batch_job_shell_
master

This table contains details of each shell per branch group. Shell wise status,
Last Run Date, process category and frequency of shell execution are the
critical attributes of this table.
This table will also specify whether the shell is Java Bean based shell or
Procedure Based shell.

flx_batch_job_shell_
depend

This table contains the dependencies of and for each shell in flx_batch_job_
shell_master.

flx_batch_job_shell_dtls This table will contain the details for executing Java Bean Based shell.

flx_<module>_drv_
<action> This driver table contains the batch execution details for the particular action.

flx_<module>_actions_
b

This table defines the action type, action name and action executor which gets
mapped to the driver table. The action type value is populated as action
sequence in the driver table.

flx_batch_job_shell_
results

This table contains execution details of each stream of each shell for each batch
run per branch group.

flx_batch_job_brn_grp_
mapping This table will contain themapping between the branch group and the branches.

flx_batch_job_grp_brn_
xref

This table will contain the list of branches for which a category is being run. This
table will be used only when a category is running.

Table 9–1 Database Server Components

9.5 Batch Configuration
The following section defines the configuration which needs to be done in order to create a new category or
add a new batch shell for batch execution using the batch framework.

9.5.1 Creation of New Category
The following steps explain the creation of new category:

9 Batch Framework Extensions | 179

9.5 Batch Configuration

1. Create an entry in flx_batch_job_category_master:

This contains the new category name and category code along with branch group code to be defined
here.

Columns Description

DAT_EOD_RUN This column specifies the date on which the category was last run.

COD_EOD_STATUS This column specifies the Status of the last category run. 0 - Successful
Completion ; 1 - The process was aborted after start.

COD_PROC_
CATEGORY

This column specifies the category code. 1 - EOD, 2 - BOD etc. Any
number of process categories can be defined.

FLG_MULTI_RUN This column specifies whether this category can be runmultiple times. 0 -
Multi-Run is disabled; 1 - Multi-Run is enabled.

FLG_EOD_STATE This column specifies the flag indicating the state of the category. R -
Running ; C - Completed (i.e. not running).

TXT_CATEGORY This column specifies the category description.

COD_BRANCH_
GROUP_CODE This column specifies the code of the BranchGroup of the category.

OBJECT_VERSION_
NUMBER This column specifies the version number of the category.

NAM_PROD_REP_
DB This columnmentions about the database repository.

Table 9–2 FLX_BATCH_JOB_CATEGORY_MASTER

2. Create an entry in flx_batch_job_grp_category:

This contains branch group code, new category code, bank code and dates relating to run the category.

Columns Description

BRANCH_GROUP_
CODE This column specifies the BranchGroup Code.

COD_PROC_
CATEGORY This column specifies the procedure category.

DAT_LAST_
PROCESS This column specifies the date on which the category was last run.

DAT_PROCESS This column specifies the current date of the category.

DAT_NEXT_
PROCESS This column specifies the next date of the category.

Table 9–3 FLX_BATCH_JOB_GRP_CATEGORY

3. Create an entry in flx_batch_job_category_depend (if required):

180 | Oracle Banking Platform Host Extensibility Guide

9.5 Batch Configuration

This table will contain the category dependency. If the category does not depend on any other
category, no entry in this table is required.

Columns Description

COD_PROC_
CATEGORY This column specifies the procedure category.

COD_BRANCH_
GROUP_CODE This column specifies the branch group code.

COD_PROC_REQD_
CATEGORY

This column specifies the dependency of the required procedure category
which needs to be run before this category.

COD_PROC_
VALIDATION_DATE This column defines the validation time. It can be Current/Previous.

Table 9–4 FLX_BATCH_JOB_CATEGORY_DEPEND

4. Create bean or procedure based shells:

New shells (bean/procedure based, as shown in the section below) are created and linked to the
category by populating the cod_proc_category column in those tables with the new category code
created in the flx_batch_job_category_master.

5. Add enumeration:

In themiddleware code, add an enum value in the ProcessCategoryType.java for the category.

6. Add category code in the property file:

In themiddleware code, add the entry for the category in the ProcessCategoryType_en.properties file.

7. Middleware changes:

If any validations required or any dependency on other categories we canmake changes in
EODShellProgressManager.java file accordingly.

9 Batch Framework Extensions | 181

9.5 Batch Configuration

Figure 9–5 Creation of New Category

9.5.2 Creation of Bean Based Shell
In this batch execution (Type "B"), the business logic is provided in the servicemethod of the java class.

182 | Oracle Banking Platform Host Extensibility Guide

9.5 Batch Configuration

1. Create an entry for Shell Parameters in the table FLX_BATCH_JOB_SHELL_MASTER.

Columns Description

COD_EOD_
PROCESS

Process code. This is the name of the programmodule that will be started
as a process by the EOD monitor.

TXT_ PROCESS Process name to be displayed in the new UI screen.

FRQ_PROC
Frequency at which this process is to be run.
1 - Daily 2 -Weekly 3 - Fortnightly 4 - Monthly 5 - Bi-monthly 6 - Quarterly 7
- Half-yearly 8 - Yearly.

COD_PROC_
STATUS

Process Status Code 0 - Complete 1 - Started 2 - Not Started 3 - Aborted 4
- Prerequisite Aborted 5 - Prerequisite Absent.

NUM_PROC_
ERROR Last error returned by this process.

FLG_RUN_TODAY Flag indicating whether process to be run today Y/N.

COD_PROC_
CATEGORY

Category code to which this shell belongs to e.g.: 1 - EOD, 2 - BOD and so
on.

SERVICE_KEY Servicemethod to be executed.

NAM_COMPONENT

Name of the Procedure (if procedure based batch execution) or fully
qualified class name of the Batch Handler (if bean based).

com.ofss.fc.bh.batch.BatchFrameworkShellHelper - java bean based shell

com.ofss.fc.bh.batch.BatchReportShellBean - procedure based shell for
reports

com.ofss.fc.bh.batch.BatchReportRestartShellBean - procedure based for
report epilogue shell

TYPE_COMPONENT This indicates whether the specified nam_component is Java class or
Function. P stands for Function and B Stand for the Java Class.

NAM_DBINSTANCE TheDB instance for PROD or REP (reports).

COD_BRANCH_
GROUP_CODE Specifies the branch group code that a branch is part of.

OBJECT_VERSION_
NUMBER This column specifies the version number of the category.

Table 9–5 FLX_BATCH_JOB_SHELL_MASTER

2. Create an entry for Shell Details in the table FLX_BATCH_JOB_SHELL_DTLS.

This table contains the following parameters;

9 Batch Framework Extensions | 183

9.5 Batch Configuration

Columns Description

COD_SHELL A unique code for batch shell.

SHELL_NAME Provide a name to batch shell.

SHELL_
DESCRIPTION Description about the batch shell.

COMMIT_
FREQUENCY

Provide the commit frequency thus, after every this no of records have
been processed the framework would commit those set of records

FLG_RECOVERY_
MODE

Flag indicating whether recovery mode is ON or OFF. Possible values are
'Y' and 'N' only. This would be only used by Batch Processes which
support recovery mode functionality but theremight be batch processes
which would ignore this flag (e.g.: SBP).

FLG_STREAM_TYP
Define the type of stream for the batch shell. This would have three
possible values ('S' - fixed no of streams, 'R' - fixed no of rows, 'N' - no
streams).

STREAM_COUNT Define the no of streams to be created for the batch shell. This is only
applicable if the StreamType is marked as 'S' or 'R'.

INPUT_DRV_NAME Define the fully classified class namemapped to the driver table.

INPUT_SHELL_
PARAM Define the name for the shell parameter.

SERVICE_CLASS_
NAME

Define the fully classified class name for the service class. This class is
the starting point of the business logic execution.
In case of service class name as ActionSetProcessor, the action
sequence column is populated in the driver table. The execution is done
corresponding to those actions.

SERVICE_METHOD_
NAME

Define only method name of the service. The servicemethod should have
input parameter as driver table entity.

DRV_POP_PROC_
NAME

Defines the name procedure used for driver table population. The
procedure should have three input parameters branch group code, process
date and next process date. Use only procedures instead of packages for
data population. Because db2 will not support Package.

FLG_PROCESS_
TYPE

It defines the type of process RBP or SBP. In RBP (Recoverable Batch
Process) if any records fails in batch it will continue and execute rest of
the records in the stream. But in case of SBP (Simple Batch process) it
will abort the stream.

HELPER_CLASS_
NAME It defines the helper class for caching big queries.

BATCH_NO Indicates the batch number for the shell.

Table 9–6 FLX_BATCH_JOB_SHELL_DTLS

3. Create an entry for Shell Execution Order in the table FLX_BATCH_JOB_SHELL_DEPEND.

184 | Oracle Banking Platform Host Extensibility Guide

9.5 Batch Configuration

Columns Description

COD_EOD_
PROCESS

Process code. This is the name of the programmodule that will be started
as a process by the EOD monitor.

COD_REQD_
PROCESS Required process code after which the framework will run process code.

COD_PROC_
CATEGORY Category of the Process Code. 1 - EOD, 2 - BOD and so on.

COD_REQD_PROC_
CAT Category of the required process code. 1 - EOD, 2 - BOD and so on.

COD_BRANCH_
GROUP_CODE This column specifies the branch group code.

Table 9–7 FLX_BATCH_JOB_SHELL_DEPEND

If the shell is not dependent on any other shell or category then no need to keep an entry in this table.

4. Create a new driver table (the name of the table prefix by FLX_<ModuleCode>_drv_<>) for the Batch
Shell. This is the table from which the data will be picked up for processing by the defined batch
process. This table should be populated by the procedure written for population of the driver table. This
table would contain the following parameters:

Column Description

DATE_RUN
Defines the date on which the batch job was run (process date).Value in
this column needs to be populated by the driver table population
procedure.

SEQ
Sequence no for the data present in the table i.e. simple sequence from 1
tomaximum number of records present in table. Value in this column
needs to be populated by the driver table population procedure.

PROCESS_RESULT

Define the columnwhich would contain the result of processing of each
record of this table. This columnwould be updated the framework with
values 0,1, 2,3 or 4 indicating not processed, processing of record
successful, failed with business exception , failed with framework
exception or failed with SQL exception respectively.

ERROR_CODE
Define the column for error code. This would be updated the framework
with the error code returned by the processing logic (currently updating the
exception if any occurred).

BRANCH_CODE Attribute specifies the branch code in which the shell is executed.

BRANCH_GROUP_
CODE Attribute specifies the branch group code that a branch is part of.

ERROR_DESC Attribute specifies error description. This will populated by the batch
framework in case the record aborts.

ACTION_
SEQUENCE

In case of service action as ActionSetProcessor, the batch execution is
done through the executor framework defined in the action table of the

Table 9–8 Driver Table

9 Batch Framework Extensions | 185

9.5 Batch Configuration

Column Description

(Optional)

module. The details of this action table in mentioned below.
If user want to executemultiple actions, then the comma separated
action_type can be defined in this column. They will be executed based on
the defined priorities.

<Custom_Columns>

Define the other columns required which would contain the data required
by the processing logic. Typical examples would be a column containing
accountNo (if themain logic is per account) or customerId or txnRefNo
etc. We can havemultiple such columns which are used for per record
processing for e.g. we can have two columns branchCode, accountNo.

Note

DATE_RUN, SEQ, BRANCH_GROUP_CODE columns are part of
the Unique key. For example, flx_in_drv_eod_actions

5. Add the entry of the action in the actions table (FLX_<ModuleCode>_actions_b) for the shell where the
servicemethod is defined as ActionSetProcessor in the details table. This table would contain the
following parameters, for example, flx_td_actions_b.

Column Description

ACTION_TYPE Stores the type of action to be performed. The defined action type is
populated in the action sequence column of the driver table.

ACTION_LEVEL Stores the action level of the action as 0,1,2 based on the execution
status.

PRIORITY Stores the priority of the action.

ENTITY_STATUS Stores the status of the entity.

ACTION_NAME User friendly name of the action.

ACTION_DESC Stores the description of the action.

ACTION_EXECUTOR Stores the name of the action executor which needs to be executed when
the service action is populated as ActionSetProcessor.

HOLIDAY_
TREATMENT Stores the holiday treatment of the action.

HOLIDAY_EPOCH_
TYPE Stores the holiday epoch type of the action.

Table 9–9 Actions Table

6. Create a procedure (the name of the proc prefixed with ap_<Module Code>_pop_drv)which would
populate the data in the driver table, created above. This procedure would be called at the first time
when the Batch shell is run. The procedure will have only three arguments branch group code, process
date and next process date. For example, ap_in_pop_drv_eod_actions.

186 | Oracle Banking Platform Host Extensibility Guide

9.5 Batch Configuration

7. Create an entity which extends AbstractBatchData andmap this entity to the driver table. This entity
namewould be the one which will carry the data to be processed for batch processing. This should be
provided in the InputDataName column of flx_batch_job_shell_dtls table. e.g.:
InterestEODActionSetBatchData

8. Map the entity to the driver table in the hbm. The entity attributes should represent only Extra columns
added in the driver table. They shouldn't bemapped to the seq, date_run, error_code, process_result
columns. For example, InterestEODActionSet.hbm.xml.

9. Make additions in batch-mappings.cfg file for the new hbm entities created for BatchData. For
example, account-mappings.cfg.xml

10. CreateHelper Class for caching big queries in Application layer. The fully qualified class name of the
helper class needs to be defined in theHELPER_CLASS_NAME column of the FLX_BATCH_JOB_
SHELL_DTLS table. For example, InterestEODActionSetBatchDataHelper.java

11. Create a service processor classwith the service methodwhich processes the batch application.
For example, ActionSetProcessor

The fully qualified class name of this service processor class need to be defined in theSERVICE_
CLASS_NAME column of the FLX_BATCH_JOB_SHELL_DTLS table.

This processingmethod defined in this class should be specified in theSERVICE_METHOD_NAME
column of the FLX_BATCH_JOB_SHELL_DTLS table.

The servicemethod should have two input arguments - ApplicationContext and AbstractBatchData.

If the shell needs to handle the batch exceptions, the service processor class should implement
IBatchHandler interface.

Note

The above steps would suffice for creating a batch shell to be run using
the new Batch Framework. The Results of the shell will be present in
the FLX_BATCH_JOB_SHELL_RESULTS table.

9.5.3 Creation of Procedure Based Shell
In this batch execution (Type "P"), the business logic is provided in the Stored Procedures.

1. Create an entry forShell Parameters in the table FLX_BATCH_JOB_SHELL_MASTER. Same as
described in the above section.

2. Create an entry forShell Execution Order in the table FLX_BATCH_JOB_SHELL_DEPEND. Same
as briefed in the above section if there is any dependency with any other shell.

3. Create a function in Database which contains the Business logic. This function will be used for batch
procedure based execution and the signature of the functionmust have the arguments as shown in the
example:

CREATE OR REPLACE FUNCTION ap_as_batch_verify
(var_pi_cod_brn_grp_code VARCHAR2,
var_pi_cod_user_no NUMBER,
var_pi_cod_user_id VARCHAR2,
var_pi_dat_process DATE,
var_pi_nam_bank VARCHAR2,

9 Batch Framework Extensions | 187

9.5 Batch Configuration

var_pi_cod_stream_id NUMBER,
var_pi_cod_eod_process VARCHAR2,
var_pi_cod_proc_category NUMBER) RETURN NUMBER AS
VAR_L_RETCODE NUMBER;
BEGIN
VAR_L_RETCODE := 0;
-----------------------------1. Init Restart-----------------------

BEGIN
plog.error('var_pi_dat_process : ' || var_pi_dat_process);
var_l_ret_code := ap_ba_init_restart(var_pi_cod_eod_process,
var_pi_cod_brn_grp_code,
var_pi_cod_proc_category);
IF (var_l_ret_code != 0) THEN
BEGIN
IF (var_l_ret_code = -2) THEN
RETURN var_l_ret_code;
ELSE
ora_raiserror(SQLCODE, 'Error in executing Init Restart ', 53);
RETURN 95;
END IF;
END;
END IF;
END;
-------------------------------2.Bisuness Logic--------------------

...we can write a piece of code …or a new proc which contain all
the business logic...
---------------------------------3.Finish Restart------------------

BEGIN
var_l_ret_code := ap_ba_finish_restart(var_pi_cod_eod_process,
var_pi_cod_brn_grp_code,
var_pi_cod_proc_category,
var_pi_dat_process);
IF (var_l_ret_code != 0) THEN
ora_raiserror(SQLCODE, 'Error in executing Finish Restart ', 76);
RETURN 95;
END IF;
END;

return 0;
EXCEPTION
WHEN OTHERS THEN
ora_raiserror(SQLCODE,
'Execution of ap_as_batch_verify Failed',
37);

188 | Oracle Banking Platform Host Extensibility Guide

9.5 Batch Configuration

RETURN 95;
END;/

9.5.4 Population of Other Parameters
The following procedures describe the population of other parameters:

1. Create database credential details for Lock Connection in the jdbc.properties file

Figure 9–6 Population of Other Parameters

2. Create datasource on the host server where the batch needs to be executed

Figure 9–7 Population of Other Parameters - General Tab

9 Batch Framework Extensions | 189

9.5 Batch Configuration

Figure 9–8 Population of Other Parameters - Connection Pool

3. Enable Node Affinity for Batch Processing (Optional)

This feature can be used for Clustered Database environment. In this feature connections taken by
threads are pinned to a particular database node explicitly in order to reduce ClusterWait events.

4. To enable this feature, set IS_DB_RAC = true in jdbc.properties file and specify the number of DB
nodes.

Figure 9–9 Population of Other Parameters - Set IS_DB_RAC

5. Create a separate data for each node in the cluster. Each of these connections will have the IP of an
individual node instead of the SCAN-IP. Specify the data source configuration per node in the cluster in
jdbc.properties.

190 | Oracle Banking Platform Host Extensibility Guide

9.6 Batch Execution

Figure 9–10 Population of Other Parameters - Specify Data

9.6 Batch Execution
The user can execute the batch process from the task code EOD10 screen. User needs to select the process
category, job type and job code. The corresponding shells get populated in the table below which can be
started by clicking on the start/restart button.

User can alsomonitor the performance by clicking on the Refresh button available in the Category Details
section. The execution of the batch takes care of shell dependencies and the dependent shells are run once
their dependencies are executed.

Figure 9–11 Batch Execution

9 Batch Framework Extensions | 191

192 | Oracle Banking Platform Host Extensibility Guide

10 Uploaded File Data Processing

In Banks, there aremultiple times when the bulk load of data is available in the form of files which needs to be
uploaded and processed in the banking application. An example for the same can be salary credit processing.
The salary credit data is provided by the organizations in the form of files where employer account needs to be
debited and themultiple accounts of the employees needs to be credited for the provided data in the files.

In OBP, file upload and file processing are two independent processes where the upload of file is done as one
process and the processing on the uploaded data is done as another process. Every upload provides a unique
file lD for the uploaded file. The processing is then done for each uploaded file and the final status is then
provided at the end of the processing in the form of ProcessStatus.

The below section, from the extensibility perspective, provides the detailed understanding of the steps
involved in the business logic processing of the files once the files are uploaded from the upload services.
After the upload of the data, the data gets populated in the temporary tables in the database with the unique
file id, which is then used for the processing of the uploaded file for the required business logic.

In the abovementioned salary credit example, the employer account details (in the form of header records)
and themultiple employee account details (in the form of detail records) can be uploaded in OBP through the
file upload, functionality which can then be processed for debiting the employer account and crediting the
multiple salary accounts of the employees.

The framework of the uploaded file processing is shown in the sequence diagram below:

10 Uploaded File Data Processing | 193

10.1 Configuration

Figure 10–1 Uploaded Data File Processing Framework

From the implementation perspective, the following sections describe the configuration and processing of
uploaded file.

10.1 Configuration
The configuration part of the uploaded file processing requires definition of the following components that
needs to be defined for the processing on the uploaded file.

194 | Oracle Banking Platform Host Extensibility Guide

10.1 Configuration

10.1.1 Database Tables and Setup
In case of file processing, there is onemaster table and individual record process tables for the recordType.

n FLX_EXT_FILE_UPLOAD_MAST

Column Name Description

COD_FILE_ID This defines the primary key identifier as file id for each specific file.

COD_XF_SYSTEM
This identifies the system to which the file type is associated. This indicates
that the file is received from or sent to the particular system indicated by the
system code.

FILE_TYPE This identifies the type of file that is being uploaded. For every file type the
format is defined. The file type can be like TXN .

NAM_HOFF_FILE Name of the uploaded file.

TXT_NRRTV File Narration for the uploaded file.

COD_ORG_BRN This stores the originating branch code from where the file is uploaded.

CTR_BATCH_NO This identifies the batch number of the file upload. This is generated internally.

DAT_FILE_PROCESS The process date as specified while uploading a file.

COD_FILE_STATUS Indicates the current status of the file.

DAT_FILE_UPLOAD Indicates when the file was uploaded.

DAT_TIM_PROC_
START The start time indicates the time the processing starts.

DAT_TIM_PROC_END The end time indicates the time the processing ends.

DAT_FILE_REVERSE Indicates when the file was reversed.

CTR_TOTAL_REC This value indicates the total records in the file.

CTR_PROCESS_REC This Value indicates the number of records processed for a file.

CTR_REJECT_REC This Value indicates the number of records rejected for a file.

FILE_SIZE This value indicates the size of the file in bytes.

COMMENTS The file Comments for the uploaded file if the processing fails.

FILE_CHECK_SUM This column is used to store check sum of the file.

FROM_ODI This flag is used to indicate whether upload is happening from ODI.

CURR_RECORD_
TYPE

This column denotes the current record type being processed, updated after
every recordType is successfully processed.

Table 10–1 FLX_EXT_FILE_UPLOAD_MAST

n FLX_EXT_<<Process>>_HEADERRECDTO e.g. FLX_EXT_SALCREDIT_HEADERRECDTO

n FLX_EXT_<<Process>>_DETAILRECDTO e.g. FLX_EXT_SALCREDIT_DETAILRECDTO

The file ld and record Id together as the key forms the record identifier in the record tables. Themandatory
fields in the record tables arementioned below. The additional required fields should be defined as the
additional columns in the record tables.

10 Uploaded File Data Processing | 195

10.1 Configuration

Column Name Description

RECORDID This defines the primary key identifier as record id in the table. This is generated
for every record.

FILEID This is the primary key identifier as file id for the specific file.

RECORDTYPE The type of record; possible values 'H', 'D' and 'F'.

RECORDNAME Name of the record type; possible values 'Header', 'Detail' and 'Footer'.

DATA
Stores the complete data of each row of the file. This is populated for inquiry
purposes that the user can view the contents of the record as it was read from
the file.

LENGTH Total length of DATA. This value is populated after the record is parsed.

COMMENTS Comment update at the time of GEFU Upload and Processing of record.

RECORDSTATUS
List of Record Status : 1-UPLOADED, 2-FAILED_UPLOAD, 3-CANCELLED,
4-INPROGRESS, 5-PROCESSED, 6-FAILED_PROCESS, 7-REVERSED, 8-
FAILED_REVERSED, 9-ABORTED, 10-MARKED_FOR_PROCESS.

DATE_RUN This column holds the value of batch job's run date.

SEQ This column holds the value of batch job's sequence number.

PROCESS_RESULT This column holds the value of batch job process result.

ERROR_CODE This column holds the value of batch job's error code.

ERROR_DESC This column indicates the Error Description.

BRANCH_CODE This column holds the branch code of the branch.

BRANCH_GROUP_
CODE This column holds the value of branchGroup code.

Table 10–2 Mandatory Fields in Record Tables

n FLX_EXT_FILE_PARAMS

This table contains the information about the file definition template which is used to define the handlers, DTO
and other details required for the processing of the uploaded file.

Column Name Description

COD_XF_SYSTEM
This identifies the system to which the file type is associated. This indicates
that the file is received from or sent to the particular system indicated by the
system code.

FILE_TYPE This identifies the type of file that is being uploaded. For every file type the
format is defined. The file type can be like TXN.

NAM_XF_SYSTEM
Name of the system to which the file type is associated. This indicates that the
file is received from or sent to the particular system indicated by the system
code.

NAM_FILE_TYPE This is name of the type of file that is being uploaded. For every file type the

Table 10–3 FLX_EXT_FILE_PARAMS

196 | Oracle Banking Platform Host Extensibility Guide

10.1 Configuration

Column Name Description

format is defined. The file type would be like PYMT (Payment File) or SAL
(Salary Upload).

NAM_UPLOAD_TMPL XFF file definition template name.

FLG_OUTPUT_REQD Once the processing of all the records is complete, a check is made if its value
is 'Y' and then the response file is generated accordingly.

FLG_FILE_
TRANSACTIONAL Used to decide, whether File level validation is required or not.

CTR_COMMIT_SIZE Used to commit records in batch while processing, so it's the batch size.

RELATIVE_PATH If provided, this searches for xff file in the path: base_folder/folder_name_
mentioned_here.

COD_ADHOC_
REQUEST_CLASS Adhoc request class name

CTR_UPLOAD_
COMMIT_SIZE Used to commit records in batch while validation, so it's the batch size.

FLAG_DUPLICATE_
FILE_CHECK This flag is used to indicate whether duplicate file check is required or not.

FLAG_FROM_ODI This flag is used to indicate whether upload is happening from ODI.

n FLX_BATCH_JOB_SHELL_DTLS

This table contains the information about the batch processing with bean based shell mechanism as
described in the 'Batch Framework Extension' section. The sample values are provided below:

Columns Description Sample Values

COD_SHELL
A unique code for batch
shell. For example,
'upld_batch_shell_
<ProcessType>'

upld_batch_shell_SalCredit

SHELL_NAME Name for batch shell GEFU Processing Shell For Salary Credit

SHELL_
DESCRIPTION

Description about the
batch shell GEFU Processing Shell For Salary Credit

COMMIT_
FREQUENCY Commit frequency 100

FLG_
RECOVERY_
MODE

Recovery mode - ON /
OFF Y

FLG_STREAM_
TYP

Type of stream : 'S' -
fixed no of streams, 'R'
- fixed no of rows, 'N' -
no streams

S

Table 10–4 FLX_BATCH_JOB_SHELL_DTLS

10 Uploaded File Data Processing | 197

10.1 Configuration

Columns Description Sample Values

STREAM_
COUNT

No of streams for the
batch shell. Applicable
only for StreamType as
'S' or 'R'

2

INPUT_DRV_
NAME

Fully classified class
namemapped to the
driver table

com.ofss.fc.entity.upload.AbstractRecordDTO

INPUT_SHELL_
PARAM

Name for the shell
parameter AbstractRecordDTO

SERVICE_
CLASS_NAME

Fully classified class
name - starting point of
the business logic
execution

com.ofss.fc.upload.processor.batch.BatchRecordProcessor

SERVICE_
METHOD_
NAME

Method name of the
service processRecord

DRV_POP_
PROC_NAME

Defines the name
procedure used for
driver table population

ap_gefu_pop_drv_gefu_rec

FLG_
PROCESS_
TYPE

RBP (Recoverable
Batch Process) if any
records fails in batch, it
will continue and
execute rest of the
records in the stream or
SBP (Simple Batch
process) it will abort the
stream

RBP

HELPER_
CLASS_NAME

Helper class for
caching big queries com.ofss.fc.upload.processor.batch.GEFUBatchJobHelper

BATCH_NO Batch number for the
shell 1

10.1.2 File Handlers
File Handler class is written for processing of the uploaded file and should extend the AbstractFileHandler.
The class name of the File Handler is mentioned in the File Definition XML. In this class, the following
abstract methods should be implemented:

n isValid() : To check if the particular uploaded file is valid. Validations such as, is the file uploaded
duplicate or not, or are the header details valid or not are done as part of file level validations.

n processFile() : To write the actual processing business logic where the functionality is implemented, if
required, or else a default blank implementation is executed.

198 | Oracle Banking Platform Host Extensibility Guide

10.1 Configuration

Figure 10–2 File Handlers

10.1.3 Record Handlers for Both Header and Details
This class provides themethods for record level validations and processing. It should extend the
AbstractRecordHandler. The class name of the Record Handlers are alsomentioned in the File Definition
XML. The following abstract method needs to be implemented in this class:

n isValid() : To check if the particular uploaded record is valid for the processing purpose.

n process() : To write the actual processing business logic where the functionality is implemented. It is
called once the file is successfully validated.

10 Uploaded File Data Processing | 199

10.1 Configuration

Figure 10–3 Record Handlers for Both Header and Details

10.1.4 DTO and Keys Classes for Both Header and Details
This is a persistent class for the particular process. This class provides the fields which represents the
characteristics of the record data. This class is defined for each record type of a file.

200 | Oracle Banking Platform Host Extensibility Guide

10.1 Configuration

Figure 10–4 DTO and Keys Classes for Both Header and Details - HeaderRecDTOKey

10 Uploaded File Data Processing | 201

10.1 Configuration

Figure 10–5 DTO and Keys Classes for Both Header and Details - AbstractDTORec

10.1.5 XFF File Definition XML
The xff file contains all the information about the different record type DTOs, the fields in those DTOs and the
handlers pertaining to the uploaded file. The name of the xff file is mentioned in the FLX_EXT_FILE_
PARAMS table. The file details are read from each tag in xff file and interpreted as described below in the
table. The record element can occur N number of times based on number of record types present, for example
if a particular upload has three record types Header, Detail and Trailer then there will be three elements for
Record, each describing the three record types.

There are two one-to-many relationship in the file definition xml file:

n One ’File’ element can havemany ’Record’ elements, depending upon the number of recordType
present for this upload.

n One ’Record’ element can havemany ’Field’ elements, depending upon the number of fields present for
this recordType of upload.

202 | Oracle Banking Platform Host Extensibility Guide

10.1 Configuration

Elements Attributes Description

File Contains all details about the FileHandler, there is only once
occurrence of this element.

fileName This denotes logical name of the file.

validationClassName Fully qualified name of the FileHandler class.

encryptionClass This denotes the name of the class that is used for encryption
(optional).

charSet This denotes the Charset of the file.

delimiter This denotes delimiter coming in the file (optional).

comments This is used to store comment on the file (optional).

lengthInBytes This Boolean variable is used to denote whether the file's length
has to be calculated in bytes.

xffSystem Name of xff file system, name should be same as mentioned in
COD_XF_SYSTEM in table FLX_EXT_FILE_PARAMS.

fileType Name of file type, name should be same as mentioned in FILE_
TYPE in table FLX_EXT_FILE_PARAMS.

Record Child element of "File" can have any number of occurrences
depending upon number of RecordType for a particular Upload.

recordHandlerClassName Fully qualified name of the Handler class for this RecordType.

recordType This denotes record type which can be "Header", "Detail" or
"Trailer"

streamingAllowed Indicates if the streaming is allowed for the record; Possible
values are true or false.

dtoClassName Name of DTO for this particular recordType.

recordName Name of this record.

multiplicity
This denotes whether this record type will appear only once in
the file or multiple times. Value of this field will be either 1 (for
only once) or -1 (for multiple times).

maxFields This denotes themaximum number of fields coming in the record
type.

comments This stores comments (optional).

maxLogicalRecords This denotes maximum number of records that may come of this
record type.

parent

lastFieldOfVariableLength This denotes whether the last field of the record is variable or not.
This value can be either "true" or "false".

Field Child element of "Record" can have as many occurrences as the
number of fields in a particular recordType.

Table 10–5 XXF File Definition XML

10 Uploaded File Data Processing | 203

10.1 Configuration

Elements Attributes Description

name Name of the field.

type This denotes field type. E.g.:- 'CHAR', 'NUMBER' and so on.

length Length of field.

format This denotes format of the field.

recordIdentifier This denotes whether this field is used to identify the record.
Value of this field can be either true or false.

nullable This denotes whether this field can be null or not.

defaultValue Default value of this field if any.

comments This stores the comment on the field (optional).

crossReferenceID If another field wants to refer to this field then this id will be used.

Figure 10–6 XXF File Definition XML

204 | Oracle Banking Platform Host Extensibility Guide

10.2 Processing

10.2 Processing
Processing of an uploaded file is done on two levels, one on file level and the other on Record level. The
processing is initially triggered when amessage is sent on to a JMS Queue. Themessage is then picked up
by anMDB which parses themessage into a key value pair, and then passes it on to the FileProcessor by
passing the processor type as an input. Based on the processor type, that is, header or detail record, the file
processor initiates respective processing by invoking specific business logic written as file or record level
handlers.

The processing of the business logic to different Service APIs of different modules are carried in the handler
classes of the records. The processForRecordType() method of the FileProcessor invokes the respective
handler classes that is, if the Header section is being processed, it invokes the HeaderHandler class.

As per the process, the headers are processed first and then the details records. Each and every record is
processed individually. As soon as a file is picked for processing, its status is changed to InProgress so that
the same file is not picked by any other process for processing. Individual records are processed based on its
record type.

10.2.1 API Calls in the Handlers
The API calls of different exposed application services are called from the handlers. The respectivemethod
call from the adapter will return the response object which can be further used for another adapter call as the
input value or for the validation purpose. In the following example, it is shown that the salary account is
debited for the user and then the returned response summary is used for validation purpose before raising the
accounting for that account.

<Response1>=Adapter1.<method call>(<method parameters>)
If(<Validation on Response1>) {
<Response2>=Adapter2.<method call>(<method parameters containing
Response1>) }
Example:
executionResponse = adapter.debitSalaryAccount()
if(executionResponse.getSummary().getIsSuccessful()) {
adapter.raiseAccounting(); }

10 Uploaded File Data Processing | 205

10.2 Processing

Figure 10–7 API Calls in Adapters

10.2.2 Processing Adapter
The processing adapters needs to be implemented for invoking the required application service API. In the
example, the new methods as creditSalaryAccount(), debitSalaryAccount() and raiseAccounting() are
implemented by the user based on their requirements.

206 | Oracle Banking Platform Host Extensibility Guide

10.3 Outcome

Figure 10–8 Processing Adapter

10.3 Outcome
In case of header or footer, there is only one Record for these record types, hence based on Record Level
Status returned, the processing status is set, if RecordLevelStatusType is SUCCESS orWARNING, the
PROCESSING_STATUS will bemarked as SUCCESS else FAILURE.

In case of detail records, processing status is decided based on the criteria that is, if NumberOfRecords with
record processing status as FAILED is equal to totalNoOfRecords then overall ProcessStatus is FAILED or if
less than totalNoOfRecords then overall ProcessStatus is WARNING and if zero then overall ProcessStatus
is SUCCESS. Also, in case there is error in insertion of any record to the working table then overall
ProcessStatus is FAILED.

Each record on processing can have any one of the three process status. If process status is success it
moves to the next record. If process status is warning then it moves to the next record but marks the record
as failed. If process status is failure then an Exception is raised and the file is marked as Failed.

10 Uploaded File Data Processing | 207

10.4 Failure/Exception Handling

Status Name Value Description

SUCCESS 0 Processing of this record is a success. Further record processing should
continue.

FAILURE 1 Processing of this record has failed. Further record processing should not
continue.

WARNING 2 Processing of this record has failed. Further record processing should continue.

Table 10–6 Process Status

On successful processing, the record will get persisted into the respective table and return a status of '5' to
the invokedmethod.

But, in case of failure, the status is returned as '6' for that particular record and it continues with the next
record for processing. Also the exceptions raised during a failure can be appended into the "comments"
column of the respective table.

10.4 Failure/Exception Handling
There can be processing failure in case of any validations failure caused by the service. In case of any
exceptions raised, it will be handled in the handler class.

While invoking an API when the SessionContext variables are not passed properly it would result in null.
’Invalid user id’ will be added in the comments column and the processing will not happen.

The exceptions raised during processing can be logged into the comments column of the respective table by
calling the setErrorMessage() method. In case of process failure in file handling, this method can also be
invoked from inside the catch block of the processFile() method:

this.setErrorMessage(errorMessage);
processStatus = ProcessStatus.FAILURE;

208 | Oracle Banking Platform Host Extensibility Guide

11 Alerts Extension

OBP has to interface with various systems to transfer data which is generated during business activities that
take place during teller operations or processing. OBP Application is, therefore, provided with the framework
which can support on-line data transfer to interfacing systems.

The event processingmodule of OBP provides amechanism for identifying executing host services as
activities and generating or raising events that are configured against the same. Generation of these events
results in certain actions that can vary from dispatching data to subscribers (customers or external systems)
to execution of additional logic. The action whereby data is dispatched to subscribers is termed as Alert.

The following sections provides an overview of what the developer needs to do in order to add a new Activity
and anEvent which will be raised on execution of the said that activity. Wewill be using a sample activity and
event to illustrate the steps.

Use Case: In theParty -> Contact Information -> Contact Info screen, user can create or update the contact
details for a party. This screen has many attributes like telephone number, email, do not disturb info and so
on. Wewill be registering this update transaction as anActivity and creatingEvents which will be raised on
this activity.

11.1 Transaction as an Activity
This section describes how existing or new online transactions can be supported and recognized as activity
for the events that are setup in the system with action, subscriber and dispatch configuration already in place.
A transaction can be either financial or maintenance executing in the application server middleware host
environment. This kind of setup is particularly useful when we have external systems like CEP, BAM to
which data needs to be dispatched online.

The procedure for creating activities and events for a financial transaction is a subset of the same for a
maintenance transaction. The aforementioned use case describes amaintenance transaction.

11.1.1 Activity Record
Youwill need to create a record for the activity in the table FLX_EP_ACT_B which stores all the recognized
activities. This table has the following columns:

Column
Name Use Example

COD_ACT_ID
The unique activity id for
the activity. This id will
be used in the activity -
event mapping as well

'com.ofss.fc.app.party.service.contact.
ContactPointApplicationService.updateContactPoint.dndInfo'

TXT_ACT_
NAME Activity name 'ContactPointApplicationService.updateContactPoint.dndInfo'

TXT_ACT_
DESC

Meaningful description
of the activity 'DND Info Change'

Table 11–1 FLX_EP_ACT_B

11 Alerts Extension | 209

11.1 Transaction as an Activity

Column
Name Use Example

MODULE_
TYPE

Module code for the
module of which the
transaction is a part off

'PI'

CREATED_
BY

User id of the user
creating this record 'SYSTELLER'

CREATION_
DATE

Creation date of this
record to_date('20110310', 'YYYYMMDD')

LAST_
UPDATED_
BY

User id of the user last
updating this record 'SYSTELLER'

LAST_
UPDATE_
DATE

Last update date of this
record to_date('20110310', 'YYYYMMDD')

OBJECT_
VERSION_
NUMBER

Version number of this
record 1

OBJECT_
STATUS Status of this record 'A'

Sample script for Activity Record:

Figure 11–1 Sample script for Activity Record

11.1.2 Attaching Events to Activity
Recognized events can be attached to recognized activities. Themapping in this case can bemany-to-many
viz., an activity can raisemultiple events and an event can be raised by multiple activities.

11.1.3 Event Record
Youwill need to create an event record in the table FLX_EP_EVT_B which stores all the recognized events.
This table has the following columns:

Column Name Use Example

COD_EVENT_
ID

The unique event id for this event. This id will be used in the
activity - event mapping as well. 'PI_UPD_DND_INFO'

Table 11–2 FLX_EP_EVT_B

210 | Oracle Banking Platform Host Extensibility Guide

11.1 Transaction as an Activity

Column Name Use Example

TXT_EVENT_
TYP The type of event 'ONLINE'

TXT_EVENT_
DESC Meaningful description for the event 'DND Info Updated'

EVENT_
CATEGORY_
ID

The category code for this event 2

Sample script for Event Record:

Figure 11–2 Sample script for Event Record

11.1.4 Activity Event Mapping Record
Youwill need to create an activity event mapping record in the table FLX_EP_ACT_EVT_B which stores the
mapping between all activities and events. This table has the following columns:

Column Name Use Example

COD_ACT_ID
The unique activity id
as specified in the
activity table

'com.ofss.fc.app.party.service.contact.
ContactPointApplicationService.updateContactPoint.dndInfo'

COD_EVENT_
ID

The unique event id as
specified in the event
table

'PI_UPD_DND_INFO'

TXT_ACT_
EVT_DESC

Meaningful description
for the activity event
mapping

'DND Info Updated'

TXT_EVT_TYP The type of event 'OTHER'

TXT_ACT_
EVT_TYP

The type of activity
event mapping 'ONLINE'

Table 11–3 FLX_EP_ACT_EVT_B

Sample script for Activity Event Mapping Record:

Figure 11–3 Activity Event Mapping Record

11 Alerts Extension | 211

11.1 Transaction as an Activity

11.1.5 Activity Log DTO
In order to transfer activity data to the actions defined for the event, you need to develop data objects to
contain the activity data. The DTO should implement the interface com.ofss.fc.xface.ep.dto.IActivityLog.
Module specific activity log DTO's which already implement the IActivityLog interface are present. These
DTO's contain the application specific andmodule specific activity data. You can extend themodule's DTO
class and add the transaction specific activity data.

For party module, the class com.ofss.fc.app.party.dto.alert.IndividualPartyTypeDatalogDTO is one of the
classes that implement the IActivityLog interface. For the aforementioned activity, the activity log DTO can
be as follows:

Figure 11–4 Activity Log DTO

11.1.6 Alert Metadata Generation
This section describes the different types of alert metadata generation.

Metadata Generation

To generatemetadata for alerts you need to have plugin.

1. Once you have plugin you need to set properties in preferences in windows tab for Service Publisher,
Service Deployer andWorkspace Path.

2. Go to your DTO class and right-click that class and click the following : Oracle Banking Platform ->
Generate DTOMetadata.

This will generate the insert scripts for following two tables:

n FLX_MD_DATA_DEFN

n FLX_MD_FIELDS_DEFN

These scripts will be generated in your config folder by default. The path of this script is:

212 | Oracle Banking Platform Host Extensibility Guide

11.1 Transaction as an Activity

WorkspaceDirectory -> config -> meta-data-scripts -> incr-meta-data.log

Figure 11–5 Metadata Generation

Service Data Attribute Generation

After generatingmetadata, we need to generate service attribute which will bemapped with facts which will
be used in data bindings in Alert Maintenance screen AL04.

To generate we need to activity ID class for specific event, DTO is used for this activity ID.

1. Right-click that service and select Oracle Banking Platform -> Generate Service AttributeMetadata.

2. In this case also insert scripts will be generate in same location as metadata attributes.

This will generate the insert scripts for following tables:

n FLX_MD_SERVICE_INPUTS

n FLX_MD_SERVICE_OUTPUT

n FLX_MD_SERVICE_ATTR

There are some steps in generating of service attribute which are as follows:

11 Alerts Extension | 213

11.1 Transaction as an Activity

Figure 11–6 Service Data Attribute Generation

FLX_MD_SERVICE_ATTR is used tomap the alert activity attribute with the fact code and tomap the alert
activity attribute with the DTO field to extract the data from.

As an example, the key fields in FLX_MD_SERVICE_ATTR for an alert activity attribute have been listed
below:

Colum
n Description

COD_
SERVI
CE_
ATTR_
ID

The Unique ID for the Attribute of any Activity configured for an alert. For example,
com.ofss.fc.app.account.service.accountaddresslinkage.
AccountAddressLinkageApplicationService.createAccountAddressLinkage.
Alert.Party.Address.City.DTO

TYP_
DATA_
SRC

Indicates the Data Source(entity/input/DTO) for the Attribute of the Resource

COD_
ATTR_
ID

This field indicates the Fact Code. For example, Alert.Party.Address.City

Table 11–4 Key Fields in FLX_MD_SERVICE_ATTR

214 | Oracle Banking Platform Host Extensibility Guide

11.1 Transaction as an Activity

Colum
n Description

COD_
SERVI
CE_ID

This field indicates the Activity ID. For example,
com.ofss.fc.app.account.service.accountaddresslinkage.AccountAddressLinkageApplicationS
ervice.createAccountAddressLinkage

REF_
FIELD_
DEFN_
ID

This field indicates the DTO leaf field from which the data is extracted. For e.g.:
com.ofss.fc.app.dda.dto.alert.AccountAddressLinkageAlertDTO.Address,com.ofss.fc.datatype
.PostalAddress.City
Data for this column is interpreted /extracted as follows.
com.ofss.fc.datatype.PostalAddress address =
com.ofss.fc.app.dda.dto.alert.AccountAddressLinkageAlertDTO.getAddress();
String city = address.getCity()

11.1.7 Alert Message Template Maintenance
User will maintain template format and template ID to be used for the alerts definition.

Thesemessages need to be defined only if the same template is going to be used for multiple events. Else
there is a provision to define themessage template during the definition of the alert itself.

All data elements defined within the '#' symbol will be defaulted in the panel below as data attribute.

For example, your account Number #Acct No# has been credited with #currency# #transaction amount#
being cash deposited.

The user canMask certain digits in data elements that are preceded with '#' under the 'AttributeMask'
column.

11 Alerts Extension | 215

11.1 Transaction as an Activity

Figure 11–7 Alert Message Template Maintenance

11.1.8 Alert Maintenance
Given below is the Alert Maintenance screen.

216 | Oracle Banking Platform Host Extensibility Guide

11.2 Alert Subscription

Figure 11–8 Alert Maintenance

We can define the alert name, expiry date, alert type (Customer Subscribed/ Mandatory) and link this with
predefined activity and event. These entries are fed to table "flx_ep_act_evt_acn_b".

Now, we need to link a Recipient Message Template/s with this alert. For this we drag recipients from the
Recipient Panel on to the Recipient Message Template Panel. In this setup, we define the kind of recipient
and link this to predefinedMessage Template and Destination Types. The entry for this goes to table "flx_ep_
evt_rec_b".

Finally, we need to complete theMessage TemplateMapping Configuration for each Recipient Message
Template. For this, wemap each data attribute of each Recipient Message Template with a corresponding
attribute (Fact Code) from the drop down. This drop down populates fact codes configured for this activity id in
themetadata table FLX_MD_SERVICE_ATTRIBUTE. The entry for this goes to table "flx_ep_msg_src_b"

11.2 Alert Subscription
Subscription can be done for alerts at account level or at application level (called as subscription level).

11 Alerts Extension | 217

11.2 Alert Subscription

Figure 11–9 Alert Subscription

11.2.1 Transaction API Changes
Youwill need tomodify the transaction API to support the newly registered activities. This section gives an
overview of how the developer needs tomodify the transaction API.

The entry point for activity business logic would be the service call for the transaction. In the aforementioned
use case, the service call would be
com.ofss.fc.app.party.service.contact.ContactPointApplicationService.updateContactPoint(...).

Figure 11–10 Transaction API Changes - Service Call

If the activity needs to be conditional, then the logic for evaluating the conditions should be present inside the
service call. This should be followed by the invocation of the routine to register the activity. In the

218 | Oracle Banking Platform Host Extensibility Guide

11.2 Alert Subscription

aforementioned use case, the activity should be registered only if the update transaction updates the
attributes associated withDND Information. Following code snippet shows the conditional evaluation and
invocation of the call to register activity.

Figure 11–11 Transaction API Changes - Conditional Evaluation

The persistActivityLog(..) routine primarily takes theActivity Id, Event Id andActivity Log DTO. This routine
first calls a helper routine to populate the activity log DTOwith the activity data and then passes on the DTO
to the appropriateEvent Processing Adapterwhich will register the activity and generate associated events.

Figure 11–12 Transaction API Changes - persistActivityLog(..)

Youwill need to add the business logic to populate the activity log DTOwith the data specific to the
transaction and the activity. This logic can be present inside the activity helper class for themodule. Module
specific activity attributes can also be populated in this logic. Following code snippet shows the activity log
DTO population with activity data for the aforementioned activity.

Figure 11–13 Transaction API Changes - Activity Log

11 Alerts Extension | 219

11.3 Alert Processing Steps

Figure 11–14 Transaction API Changes - Register Activity

TheEvent Processing Adapter contains the logic to register the activity and generate events. You can use the
existing adapter class com.ofss.fc.app.adapter.impl.ep.EventProcessingAdapter or write your own custom
adapter whichmust implement the interface com.ofss.fc.app.adapter.impl.ep.IEventProcessingAdapter.

All the above steps would suffice to support a transaction as an activity and raise events on the activity.

On successful completion of the transaction and the activity registration and event generation, you can view
the activity log in the table FLX_EP_ACT_LOG_B and the generated events log in the table FLX_EP_EVT_
LOG_B.

Actions associated with the activity events would pick up the activity and event data from these tables for
processing.

11.3 Alert Processing Steps
For any modules the starting point is EventProcessingAdapter method named
’registerActivityAndGenerateEvent’.

Through this we call ’registerActivityAndGenerateEvent’ method of ActivityRegistrationApplicationService
whichmarks actually registration of your activities and events.

During this activity the entries aremade in table FLX_EP_ACT_LOG_B and FLX_EP_EVT_LOG_B with
appropriate comments depending on type of Alerts whether it is Mandatory (M) or Customer Subscribed (S).

There is one flagmaintained in FLX_EP_EVT_LOG_B viz. FLG_PROCESS_STAT, which specifies status of
event.

In this step various validations are also performed such as checking if email Id of recipient is mentioned and
so on.

However, the final processing of alerts is managed in ’Interaction.java’ when it is about to close that is, call is
made in ’manageLastInteraction’.

220 | Oracle Banking Platform Host Extensibility Guide

11.3 Alert Processing Steps

Figure 11–15 Alert Processing Steps

EventProcessStatusType

This shows status of event throughout cycle of event processing from Registration of event to Dispatch of
Alert. (It is maintained in FLX_EP_EVT_LOG_B table as "flg_process_stat").

The various statuses of events are as follows:

n GENERATED("G“)

n COMPLETED("C“)

n NO_SUBSCRIPTION("N")

n ABORTED("A")

n INITIATED("I")

n REINITIATED("R")

For any event online or batch, when it is logged for first time it is marked as Generated "G" in flx_ep_evt_log_b
table.

11 Alerts Extension | 221

11.3 Alert Processing Steps

Figure 11–16 Event Processing Status Type

JMS (JavaMessaging Service) is used for dispatch of alerts.

For Online Alerts:

n Direct Approach: If alert gets send in first try, flg_process_stat is as "G" in FLX_EP_EVT_LOG_B
and alert is dispatched through JMS, and then entry for that event record is moved to FLX_EP_EVT_
LOG_HIST_B and flg_process_stat is marked as "C".

n EventPoller: If alert gets failed in first retry it will mark status as "R". In this case EventPoller will pick
the failed event and complete its processing andmark status as "A" and then entry for that event
record is moved to FLX_EP_EVT_LOG_HIST_B and flg_process_stat is marked as "C".

n For Batch Alerts: In case of batch alerts as no Interaction.close() is called, the direct approach is not
used in Batch Alerts. In this case only EventPoller approach is used.

222 | Oracle Banking Platform Host Extensibility Guide

11.4 Alert Dispatch Mechanism

Figure 11–17 Batch Alerts

11.4 Alert Dispatch Mechanism
The dispatchmechanism is triggered by theAlertHandlerService for dispatching subscribed actions of type
Alert. The processing is implemented as part of the respective handlers. The handler services delegate the
call to theDispatcher based on the type of DestinationType configured in theRecipient at the time of
ActivityEventActionmaintenance which involves RecipientMessageTemplate setup.

Themodule provides definition of multiple dispatch detail configurations on the basis of SubscriberType and
various configuration parameters likeUrgencyType, ImportantType in the AlertTemplate.

The dispatcher uses theDispatchDataConverter to convert the data captured as part of activity registered in
the system into data which can be dispatched to the target subscriber.

11 Alerts Extension | 223

11.4 Alert Dispatch Mechanism

Figure 11–18 Alert Dispatch Mechanism

224 | Oracle Banking Platform Host Extensibility Guide

11.4 Alert Dispatch Mechanism

Figure 11–19 Alert Dispatch Mechanism - Dispatcher Factory

11 Alerts Extension | 225

11.5 Adding New Alerts

Figure 11–20 Alert Dispatch Mechanism - Destination

The various Destination Types are coded as per the above diagram. This existing framework makes it further
extensible as per the requirements that is, you can addmore destination types.

11.5 Adding New Alerts
To add a new alert:

1. Implement the Service Extension Interface for the application service of themethod for which alert is to
be raised.

2. Use either the preServiceMethod() or postServiceMethod() hook for themethod in the implemented
service extension class depending on the requirement.

3. Themethod should call the registerActivityAndGenerateEvent() of the EventProcessingAdapter class.
In case a custom adapter is required the custom adapter method should call

226 | Oracle Banking Platform Host Extensibility Guide

11.5 Adding New Alerts

registerActivityAndGenerateEvent() of ActivityRegistrationApplicationService.

4. New Activity ID, Event ID and implementation of IActivityLogDTO have to be created.

11.5.1 New Alert Example
This example will explain the above points in detail.

Use Case:A new alert has to be added after updating a party name.

The class PartyNameApplicationService has amethod updateIndividualName() that does this activity.

Create the extension class, say PartyNameApplicationServiceExt, for this application service by
implementing its extension interface IPartyNameApplicationServiceExt. Since the alert should be raised after
updation of party namewewill use the postUpdateIndividualName() method.

Within themethod a call to registerActivityAndGenerateEvent() in EventProcessingAdapter should bemade.

Code snippet for the call:

com.ofss.fc.app.adapter.IAdapterFactory adapterFactory =
AdapterFactoryConfigurator.getInstance().getAdapterFactory
(ModuleConstant.EVENT_PROCESSING);
IEventProcessingAdapter adapter = (IEventProcessingAdapter)
adapterFactory.getAdapter(EventProcessingAdapterConstant.MODULE_TO_
ACTIVITY);
adapter.registerActivityAndGenerateEvent(applicationContext,
activityId, eventId, new Date(), activityLog);

In case a new customer adapter has to be used, a call to registerActivityAndGenerateEvent() in
ActivityRegistrationApplicationService should bemade from within the adapter. A class called
ActivityEventKeyDTO is used which captures the event ID and activity ID.

Code snippet for the call:

ActivityRegistrationApplicationService activityManager = new
ActivityRegistrationApplicationService();
ActivityEventKeyDTO activityEventKeyDTO = new ActivityEventKeyDTO
();
activityEventKeyDTO.setActivityId(activityID);
activityEventKeyDTO.setEventId(eventID);
ActivityRegistrationResponse response =
activityManager.registerActivityAndGenerateEvent
(sessionContext,activityEventKeyDTO,eventProcessingDate,
activityLog);

The signature for themethod is:

public String registerActivityAndGenerateEvent(ApplicationContext
applicationContext,
String activityID,
String eventID,
Date eventProcessingDate,
Object logObject) throws FatalException;

11 Alerts Extension | 227

11.5 Adding New Alerts

Create new activityID, eventID and logObject to be passed to this method.

ActivityID and EventID as explained in detail in the above section have to be added in the following database
tables. If data is not added in the tables, a runtime exception will occur while displaying the alert.

FLX_EP_ACT_B stores all the recognized activities.

FLX_EP_EVT_B stores all the recognized events.

FLX_EP_ACT_EVT_B which stores themapping between all activities and events.

The Activity ID denotes the actual action that should raise the event within the application service and hence
for ease of understanding it should ideally be the fully qualified name of themethod.

Eg.com.ofss.fc.app.party.service.contact.PartyNameApplicationService.updateIndividualName

The Event ID can be anything that denotes the event

For example, UPDATED_PARTY_NAME

The logObject is an implementation of IActivityLogDTO. For the new alert a new implementation has to be
created. The DTO should have fields mapped to the placeholders in the new alert to be added

For example, for the alert "Your name has been updated from #previous_Name# to #new_Name#
successfully."

the following DTO has to bemade. The variables have tomap to the placeholders in the alert template.

public class PartyNameChangeLogDTO implements IActivityLogDTO {
private static final long serialVersionUID = -3492413059506052931L;
private String updatedName;
private String registeredOldName;
//getters and setters for the variables
}
The DTO has to be populated with relevant data
E.g.:. private IActivityLog
populateActivityLogForIndividualPartyNameChange() {
PartyNameChangeLogDTO activityLog = new PartyNameChangeLogDTO();
activityLog.setUpdatedName("Andrew Matthew");
activityLog.setRegisteredOldName("Andy Matthew");
return activityLog;
}

11.5.2 Testing New Alert
JUnit test cases can be used to test the alert created by supplying sample input data. The example below
shows how the above new alert can be tested.

public void testPartyUpdateName() throws IOException {
String testCase = "PartyUpdateName";
ActivityRegistrationApplicationService
activityRegistrationApplicationService
= new ActivityRegistrationApplicationService();
ActivityEventKeyDTO activityEventKeyDTO = new ActivityEventKeyDTO
("com.ofss.fc.app.party.service.contact.
PartyNameApplicationService.updateIndividualName "," UPDATED_PARTY_
NAME");

228 | Oracle Banking Platform Host Extensibility Guide

11.6 Support For Derived Facts

Date date = new Date();
SessionContext sessionContext = getSessionContext();
com.ofss.fc.app.party.dto.alert.PartyNameChangeLogDTO activityLog
= new com.ofss.fc.app.party.dto.alert.PartyNameChangeLogDTO ();
activityLog.setUpdatedName("Andrew Matthew");
activityLog.setRegisteredOldName("Andy Matthew");
try{
ActivityRegistrationResponse response
=
activityRegistrationApplicationService.registerActivityAndGenerate
Event(
sessionContext, activityEventKeyDTO, date, activityLog);
TransactionStatus result= response.getStatus();
dumpTransactionStatus("ActivityRegistrationApplicationService", "
testPartyUpdateName ", result);
logger.log(Level.FINER, "The ErrorCode is: "+ result.getErrorCode
());
} catch (FatalException e) {
logger.log(Level.SEVERE,"FatalException from"+THIS_COMPONENT_
NAME+". testPartyUpdateName ",e);
fail("Unexpected failure from " + THIS_COMPONENT_NAME + ".
testPartyUpdateName ");
}
}

For testing with the JUnit test cases we need to update the PoolType property in the
AlertPollerPool.properties as follows:

PoolType=JDK
The value should be JDK for testing with JUnit (standalone application) and JMS if the application is run on
WebLogic server.

11.6 Support For Derived Facts
Alerts are generated by assigning values to Facts that aremapped to the Alert Message Template
placeholders.

These values are derived from the ActivityLog attributes based on the seed data that maintains themapping
information between the ActivityLog attributes and the Facts.

In Facts Module there is a provision to co-relate different Facts and derive the value of one Fact based on the
value of the related Fact. This is done by maintaining the relationship in certain Fact tables.

The same support for Derived Facts has been included in Alerts framework.

For example, to add Party First Name information to an Alert this Fact has to be defined.

The following inserts are used to create this Fact with the name Alert.Party.FirstName.

11 Alerts Extension | 229

11.6 Support For Derived Facts

Figure 11–21 Alert.Party.FirstName

In Alerts framework, the facts that are available by default are:

Figure 11–22 Facts in Alerts Framework

In addition to these Facts all the Facts that have beenmapped with the Service Attributes of the Activity log
for the Activity Id of the Alert are available to the Alerts Framework for usage.

Facts that can be derived from any of the above Facts can be added to this list.

To relate and derive value of Alert.Party.FirstNamewith the help of available Fact Alert.Party.PartyId, the
relationship information and value derivation logic must bemaintained in the Facts tables.

Figure 11–23 Alert.Party.PartyId

FLX_FA_VALUE_BINDINGS defines the relationship and FLX_FA_VALUE_DATASOURCES defines the
data derivation logic.

Similarly, additional derived Facts: Alert.Party.Prefix and Alert.Party.LastName can bemaintained.

230 | Oracle Banking Platform Host Extensibility Guide

11.6 Support For Derived Facts

Figure 11–24 Alert.Party.Prefix and Alert.Party.LastName

Use and test themaintenance and generation of Alerts using Derived Facts.

Figure 11–25 Message Template (Fast Path: AL03)

First, alter the existing Alert Message Template using the placeholder for the derived facts.

11 Alerts Extension | 231

11.6 Support For Derived Facts

Figure 11–26 Placeholder for Derived Facts

Next, map the new Message Template placeholders in Alert Maintenance screen with the Derived Facts,
which will also appear in the drop down of the Facts that are available to the Alerts Framework.

Figure 11–27 Alert Maintenance (Fast Path: AL04)

232 | Oracle Banking Platform Host Extensibility Guide

11.6 Support For Derived Facts

Figure 11–28 Alert Maintenance - Map the NewMessage Template Placeholders

Figure 11–29 Alert Maintenance - Facts List

11 Alerts Extension | 233

11.6 Support For Derived Facts

Figure 11–30 Alert Maintenance - Mapping Completed

Next, perform aMobile Number updation from the Contact Point screen. This triggers the Alert that was
altered earlier and the followingmail is received.

Figure 11–31 Alert Mail on Mobile Number Update in Contact Point screen

The Alerts Framework has been able to substitute the place holders of theMessage Template with the Fact
values derived from Derived Fact derivation logic in Facts Framework.

234 | Oracle Banking Platform Host Extensibility Guide

12 Creating New Reports

Oracle's Business Intelligence Publisher Enterprise is a standalone reporting and document output
management solution that allows companies to lower the cost of ownership for reporting solutions. BI
Publisher Enterprise's (hereafter known as BIP) strength is that it separates the datamodel from the actual
report formatting/layout. BIP relies on 2 fundamental components to create reports, XML data and a template
that represents the look and feel of the report. The XML data can be generated from any number of sources
and BIP makes accessing data in the proper format easy. Templates can be created inMicrosoft Word and
Adobe Acrobat allowing almost anyone familiar with these desktop applications the ability to create reports.

Figure 12–1 Creating New Reports

The following sections will give an overview of Oracle's BI Publisher. The developer will be able to add and
configure anAdhoc report to OBP using the BI Publisher.

Use Case: TheOBP application has a batch framework using which a developer can easily add batch
processes, also known as batch shells, to the application. The batch framework executes all the batch shells
defined in the system as per their configuration. The results of these batch shell executions are stored in the
database. Wewill be adding a report using BIP for the execution results summary for batch shells.

12.1 Data Objects for the Report
TheDataModel of the report invokes the database to fetch the data for the report through certain data objects
that we will need to create. The primary data objects needed for the reports are as follows:

Global Temporary Table

Youwill need to create aGlobal Temporary Table based on the fields required for the report data. This table
shouldmandatory have the fieldSESSION_ID of NUMBER type. The naming convention followed in OBP for
the global temporary table's name is RPT_<Module_Code>_R<Report_Number>.

For the aforementioned use case, the script for creating the global temporary table would be as shown below.

12 Creating New Reports | 235

12.1 Data Objects for the Report

Figure 12–2 Global Temporary Table

Report Record Type

Youwill need to create a Type object with the fields present in the global temporary table. This type will
represent a single row of data for the report. The naming convention followed in OBP for the report record
type's name is REP_REC_<Report_Id>.

For the aforementioned use case, the script for creating the report record type would be as shown below.

Figure 12–3 Report Record Type

Report Table Type

Youwill need to create a Type object which will be a table of the previously created report record type. This
type will represent the set of rows of data for the report. The naming convention followed in OBP for the report
table type's name is REC_TAB_<Report_Id>.

For the aforementioned use case, the script for creating the report table type would be as shown below.

236 | Oracle Banking Platform Host Extensibility Guide

12.1 Data Objects for the Report

Figure 12–4 Report Table Type

Report DML Function

Youwill need to create a DML function which will be invoked to populate the previously created global
temporary table with the data required to be displayed in the report. This function can have parameters as per
the developer’s requirements with filtering the data or inserting additional data. The naming convention
followed in OBP for the report DML function's name is AP_DML_<Report_Id>.

For the aforementioned use case, the script for the report DML function would be as shown below.

Figure 12–5 Report DML Function

Report DDL Function

Youwill need to create a DDL function which will be invoked to fetch data required to be displayed in the
report from the global temporary table and wrap it in the previously created report table type. The naming
convention followed in OBP for the report DDL function's name is AP_DDL_<Report_Id>.

For the aforementioned use case, the script for creating report DDL function would be as shown below.

12 Creating New Reports | 237

12.2 Catalog Folder

Figure 12–6 Report DDL Function

Data Model for the Report

Once you have created the data objects for the report in the database, you can start adding and configuring
the report using BIP. Log in to the BIP application and follow these steps.

You can log in to the BIP application deployed on http: //<IP ADDRESS><PORT>/xmlpserver/ with the
credentials weblogic/weblogic1.

12.2 Catalog Folder
Before creating the datamodel or the layout for the report, you should create a folder to save themodel and
layout. You can find the link for the Catalog tab on the home screen. Click it and create a folder for your report
at an appropriate location.

For the aforementioned use case, you can create a folderPI007 at the location /My Folders/FC Module/Demo
as shown below.

Figure 12–7 Catalog Folder

238 | Oracle Banking Platform Host Extensibility Guide

12.3 Data Source

12.3 Data Source
Youwill need to add the data source from which the data will be fetched to be displayed in the report. The data
source can be a JDBC Connection, JNDI Connection, File, LDAP Connection and so on. You can find the
link for theAdministration tab on the home screen. Click it and choose the appropriate data source connection
type. Enter the required parameter values and validate the connection. Save the data source with an
appropriate name.

For the aforementioned use case, you can add the JDBC Connection data source as show below.

Figure 12–8 Data Source

12.4 Data Model
Youwill need to create a datamodel to back the report. This datamodel represents the report data fetched
using the data objects and formatted into XML data. You can find the link toCreate DataModel on the home
screen of BIP. Click it and follow these steps:

1. Enter an appropriate description for the datamodel.

2. Choose the previously created data source from the list displayed.

3. Check the Enable Scalable Model option.

4. Check the Include Parameter Tags option.

5. Check the Include Empty Tags for Null Elements option.

6. Check the IncludeGroup List Tags option.

7. You can leave the rest of the options to default.

For the aforementioned use case, you can create datamodel as shown below.

12 Creating New Reports | 239

12.4 Data Model

Figure 12–9 Data Model

Data Set

After creating the datamodel, you will need to create a data set of the fields required to be displayed in the
report. You can find the link forData Sets on the left side pane of the screen. To create the data set, follow
these steps:

1. In the Create Data Set icon, choose the option Create Data Set from SQLQuery.

2. Enter an appropriate name for the data set.

3. Choose the previously created data source from the list displayed.

4. Enter the SQL query which will be used to fetch the data for the report. The results returned should be
of theReport Table Type previously created.

For the aforementioned use case, you can create the data set as shown below.

Figure 12–10 Data Set

240 | Oracle Banking Platform Host Extensibility Guide

12.4 Data Model

On click of OK, a data set will be created with all the fields as defined in the previously createdReport Record
Type.

You can group the fields as per the requirements of the report:

1. Select the field on which you want to group and chooseGroup By.

2. After creating a group, you canmove fields between the groups.

3. You can also set field which will be used to sort the data displayed in a group.

For the aforementioned use case, you can group the fields as shown below.

Figure 12–11 Group Fields

You can view and edit the XML structure and labels of the report data in theStructure tab in a tabular format.

For the aforementioned use case, the structure would be as shown below:

Figure 12–12 XML Structure and Labels

You can view the actual XML code in theCode tab.

For the aforementioned use case, the XML code would be as shown below.

12 Creating New Reports | 241

12.5 XML View of Report

Figure 12–13 XML Code

Input Parameters

You can define the Input Parameters required by the report in theParameters tab present on the left hand side
pane of the screen. To define input parameters, follow these steps:

1. In theParameters tab, click the icon forAdd Parameter.

2. Enter the name, type, display label and default value for the parameter.

3. Repeat the above steps to define as many parameters as required.

For the aforementioned use case, you can add parameters as shown below:

Figure 12–14 Add Input Parameters

12.5 XML View of Report
After following the above steps, save the datamodel in the previously created catalog folder with an
appropriate name. You can view the report without the layout in the XML form by clicking on the icon forXML
View.

242 | Oracle Banking Platform Host Extensibility Guide

12.6 Layout of the Report

In the XML view, you will see input fields for the previously defined input parameters. Enter appropriate values
in those fields and click Run. You will be able to see the XML representation of the report data.

For the aforementioned use case, the XML representation of the report data would be as shown below.

Figure 12–15 XML View of Report

12.6 Layout of the Report
A report needs to be presented in an appropriate format. The format can vary from report to report and client to
client. BIP separates the datamodel from the layout making it convenient for the developer.

Anybody familiar with usingMicrosoft Word or Adobe Acrobat can use the corresponding plug-ins for these
tools to create a layout for a report. You can create a rich layout using these standalone applications with BIP
plug-ins and then upload them to the BIP application for use in your report.

The BIP application can generate a very basic layout for your report from the data set. You can download the
generated layout, modify it as per your layout requirements and upload it to the BIP application for use in your
report.

The BIP application also allows the user to create a layout on the web. It has a rich set of tools to with drag
and drop features and a ready link to the data set fields. You can create a layout in this fashion and use it in
your report.

You can find the link toAddNew Layout on the right side of the screen. Click it to get the options to create,
generate or upload a layout.

12 Creating New Reports | 243

12.7 View Report in BIP

Figure 12–16 Layout of the Report - Create Layout

Choose from theBasic Templates to create a layout from a template. The layout editor screen will open. The
previously created data set fields are present on the left pane of the screen. The toolbar present on top of the
layout has tools to insert Layout Grid, Data Table, Repeating Section, Text Item, List, Image, Page Break,
Page Number, elements.

You can drag and drop the layout and data set elements on to the layout as per your requirements. After
making the requiredmodifications, save the layout and return to the previous screen.

For the aforementioned use case, the layout for the report would be as shown below.

Figure 12–17 Layout of the Report - Batch Job Results

12.7 View Report in BIP
After saving theDataModel and Layout, you can view the report in BIP. Click theView Report link on the top
right corner of the screen to open the report screen.

244 | Oracle Banking Platform Host Extensibility Guide

12.8 OBP Batch Report Configuration - Define the Batch Reports

Youwill be able to see the input fields for the input parameters defined for the report. Enter appropriate values
in these fields and click Apply. The report will be generated and displayed on the screen with the applicable
data returned by the previously createdDataModel and formatted as per the previously created Layout.

For the aforementioned use case, the final report would be as shown below.

Figure 12–18 View Report in BIP

You can export the report inHTML, PDF, Excel, RTF orPowerPoint formats by clicking on the icon forExport
on the right top corner of the screen and choosing the corresponding export option.

12.8 OBP Batch Report Configuration - Define the Batch
Reports
Entries are required in three tables as given below to generate reports during EOD.

insert into FLX_BATCH_JOB_SHELL_MASTER (COD_EOD_PROCESS, TXT_
PROCESS, TXT_PROCESS_NAME, FRQ_PROC, DAT_LAST_RUN, DAT_SCHEDULED_
RUN, TXT_PROC_PARAM, COD_PROC_STATUS, NUM_PROC_ERROR, FLG_RUN_
TODAY, COD_PROC_CATEGORY, FLG_MONTH_END, FLG_MNT_STATUS, COD_MNT_
ACTION, COD_LAST_MNT_MAKERID, COD_LAST_MNT_CHKRID, DAT_LAST_MNT,
CTR_UPDAT_SRLNO, COD_MODULE, DAT_PROC_START, DAT_PROC_END, TXN_KEY,
SERVICE_KEY, NAM_COMPONENT, TYPE_COMPONENT, NAM_DBINSTANCE, RETRY_
COUNTER, NON_RETRY_COUNTER, COD_UNSTREAMED_PROCESS, COD_BRANCH_
GROUP_CODE)
values ('ch_eod_report_shell', 'CASA EOD Reports', 'CASA EOD
Reports', '1', to_date('15-02-2012', 'dd-mm-yyyy'), to_date('15-12-
2007', 'dd-mm-yyyy'), '99', 0, 0, 'Y', 1, 0, 'A', ' ', 'SETUP1',
'SETUP2', to_date('09-02-2002', 'dd-mm-yyyy'), 2, 'CH', to_date
('21-08-2008 09:54:57', 'dd-mm-yyyy hh24:mi:ss'), to_date('28-02-
2011 05:02:41', 'dd-mm-yyyy hh24:mi:ss'), 'DUMMY', 'execute',
'com.ofss.fc.bh.batch.BatchReportShellBean', 'B', 'PROD', 0, 0,
'ch_eod_report_shell', 'BRN_GRP_1');

Cod_proc_category = 1, for EOD; 2, for BOD and 16 for Internal System EOD

12 Creating New Reports | 245

12.9 OBP Batch Report Configuration - Define the Batch Report Shell

Nam_component is the same for all report shells.

Also we are using Branch_Group_Category ='BRN_GRP_1' for all these report shells.

12.9 OBP Batch Report Configuration - Define the Batch
Report Shell

Insert into FLX_BATCH_JOB_SHELL_DEPEND (COD_EOD_PROCESS, COD_REQD_
PROCESS, COD_PROC_CATEGORY, COD_REQD_PROC_CAT, FLG_MNT_STATUS, COD_
MNT_ACTION, COD_LAST_MNT_MAKERID, COD_LAST_MNT_CHKRID, DAT_LAST_
MNT, CTR_UPDAT_SRLNO, COD_BRANCH_GROUP_CODE)
Values ('ch_eod_report_shell', 'dd_eod_action', 1, 1, 'A', ' ',
'SETUP', 'SETUP', to_date('30-06-1995', 'dd-mm-yyyy'),2, 'BRN_GRP_
1');

Here, in the first column is the report shell name and second is the name of the shell after which this shell
should run. So 'ch_bod_report_shell' runs after 'dd_bod_action'. The remaining columns are self explanatory.

COD_PROC_CATEGORY=1 , for EOD; 2, for BOD and 16 for Internal
System EOD
COD_REQD_PROC_CAT=1, for EOD; 2, for BOD and 16 for Internal System
EOD

Also we are using Branch_Group_Category = 'BRN_GRP_1' for all these report shells.

12.10 OBP Batch Report Configuration - Define the Batch
Report Shell Dependencies

Insert into flx_ba_report_ctrl (COD_REPORT_ID, FLG_REP_ADV, COD_
MODULE, NAM_REPORT, TYP_REPORT, FRQ_REPORT, FLG_PRINT, FLG_DELETE,
CTR_REP_COPIES, COD_PRIORITY, COD_ACCESS_LVL, COD_FILEID, BUF_INV_
VAR1, BUF_INV_VAR2, BUF_INV_VAR3, BUF_INV_VAR4, BUF_INV_VAR5, FLG_
MNT_STATUS, COD_MNT_ACTION, COD_LAST_MNT_MAKERID, COD_LAST_MNT_
CHKRID, DAT_LAST_MNT, CTR_UPDAT_SRLNO, FLG_SOURCE, FLG_SPLIT, FLG_
PROD_REP, COD_REPORT_DB_PREFIX, FLG_APPLY_SC, REF_UDF_NO, XPATH,
FLG_REPORT_SERVER)
values ('CH318', 'R', 'CH', 'CASA BALANCE LISTING', 'E', '1', '1',
'0', 1, 0, 0, 10047, ' ', ' ', ' ', ' ', ' ', 'A', ' ', 'PHASE_2',
'PHASE_2', to_date('01-11-1999', 'dd-mm-yyyy'), 2, 'P', 'Y', 'P',
'PROD', '', '', '', 'B');

Entry for each report should be here with typ_report = 'I' for Internal System EOD; 'E' for EOD and 'B' for
BOD.

Currently, for EOD and BOD eod_report_shell and bod_report_shell will take care of all non CASA and TD
EOD and BOD reports respectively.

No separatemodule specific shell is required during EOD and BOD. That is to mention Entry 3 alone is
sufficient during EOD and BOD categories for any module. However, entries are needed for all three entries
for batch report generation during any other category.

246 | Oracle Banking Platform Host Extensibility Guide

12.11 OBP Batch Report Configuration

12.11 OBP Batch Report Configuration
This section describes the OBP batch report configuration.

12.11.1 Batch Report Generation for a Branch Group Code
During Batch Process, a report should be generated for all branches linked to the respective BranchGroup
Code.

For any Batch Report to make use of the BranchGroup Code getting passed by the application, a parameter
'P_COD_BRANCH_GRP' has to be defined in the DataModel.

The DataModel should pass this parameter to the Report Related DDL Function.

The Report Related DML Function filters all branch codes from FLX_BATCH_JOB_RESULTS_FILTERED
that belong to the same BranchGroup Code.

Figure 12–19 Batch Report Generation for a Branch Group Code

12.11.2 Batch Report Generation Status
At the end of all batch processes BA_REPORT_RESTART gets logged with the generated report status as D
-> Done or F->Failed.

12 Creating New Reports | 247

12.12 OBP Adhoc Report Configuration

12.11.3 Batch Report Generation Path
The reports (for example, 30th September 2008) will be generated as shown in the host side screen-shot.

Locate these reports at this location in the host server.

/oracle/deployables/batch/08/runarea/rjsout/09/30 which actually is of the format

/config/../<BankCode>/runarea/rjsout/<MM>/<DD>

Figure 12–20 Batch Report Generation Path

12.12 OBP Adhoc Report Configuration
This section describes the OBP adhoc report configuration.

12.12.1 Define the Adhoc Reports
Define the adhoc reports as follows:

Insert into flx_ba_report_ctrl (COD_REPORT_ID, FLG_REP_ADV, COD_
MODULE, NAM_REPORT, TYP_REPORT, FRQ_REPORT, FLG_PRINT, FLG_DELETE,
CTR_REP_COPIES, COD_PRIORITY, COD_ACCESS_LVL, COD_FILEID, BUF_INV_
VAR1, BUF_INV_VAR2, BUF_INV_VAR3, BUF_INV_VAR4, BUF_INV_VAR5, FLG_
MNT_STATUS, COD_MNT_ACTION, COD_LAST_MNT_MAKERID, COD_LAST_MNT_

248 | Oracle Banking Platform Host Extensibility Guide

12.12 OBP Adhoc Report Configuration

CHKRID, DAT_LAST_MNT, CTR_UPDAT_SRLNO, FLG_SOURCE, FLG_SPLIT, FLG_
PROD_REP, COD_REPORT_DB_PREFIX, FLG_APPLY_SC, REF_UDF_NO, XPATH,
FILE_DESC, FLG_REPORT_SERVER)
values ('CH318', 'R', 'CH', 'CASA BALANCE LISTING', 'A', '1', '1',
'0', 1, 0, 0, 10047, ' ', ' ', ' ', ' ', ' ', 'A', ' ', 'PHASE_2',
'PHASE_2', to_date('01-11-1999', 'dd-mm-yyyy'), 2, 'P', 'Y', 'P',
'PROD', '', '', '', 'Savings Listing Reports', 'B');

12.12.2 Define the Adhoc Report Parameters
Define the adhoc report parameters as follows:

INSERT INTO flx_ba_report_params (COD_REPORT_ID,FLG_REP_ADV,COD_
SERIAL,NAM_PROMPT, COD_FLD_TYP,LEN_FLD,FLG_DELETE,DAT_LAST_MNT,NAM_
VAL_ROUTINE,REQD_DESC) VALUES ('CH318','R',1,'Branch
Code',0,0,'N','01-NOV-99','','Y')
/
INSERT INTO flx_ba_report_params (COD_REPORT_ID,FLG_REP_ADV,COD_
SERIAL,NAM_PROMPT, COD_FLD_TYP,LEN_FLD,FLG_DELETE,DAT_LAST_MNT,NAM_
VAL_ROUTINE,REQD_DESC) VALUES ('CH318','R',2,'Product
Code',0,0,'N','01-NOV-99','','Y')
/
INSERT INTO flx_ba_report_params (COD_REPORT_ID,FLG_REP_ADV,COD_
SERIAL,NAM_PROMPT, COD_FLD_TYP,LEN_FLD,FLG_DELETE,DAT_LAST_MNT,NAM_
VAL_ROUTINE,REQD_DESC) VALUES ('CH318','R',3,'From Date(DD-MMM-
YYYY)',8,0,'N','01-NOV-99','','Y')
/

Also COD_FLD_TYP = 8will ensures the host side date format validations.

COD_FLD_TYP = 0 is for string type parameters.

Corresponding to each of the above sequence of parameters appearing in screen, amandatory parameter
'FUNC_PARAM<Parameter Sequence Number>' should be defined in BIP DataModel. So the input
parameter 'FUNC_PARAM2' defined in datamodel should correspond to Product Code as defined above.

12.12.3 Define the Adhoc Reports to be listed in Screen
Define the group name as follows:

For Adhoc Report, column FILE_DESC of report master table FLX_BA_REPORT_CTRL contains the name
of the group under which the report will be listed in 7775 screen.

12.12.4 Adding Screen Tab for Report Module
For adding a Screen Tab do the following:

com.ofss.fc.ui.view.brop.jar@
public_
html/com/ofss/fc/ui/view/brop/reportRequest/form/ReportRequest.jsff
<af:commandNavigationItem partialSubmit="true" text="#{rb7775.LBL_
Reconciliation}"
binding="#{ReportRequest.cni11}" id="cni11" immediate="true"
actionListener="#{ReportRequest.processMode}" selected="false">

12 Creating New Reports | 249

12.13 Adhoc Report Generation – Screen 7775

<f:attribute name="mode" value="Reconciliation"/>
</af:commandNavigationItem>

com.ofss.fc.ui.view.brop.jar@
/com/ofss/fc/ui/view/brop/reportRequest/backing/ReportRequest.java
private RichCommandNavigationItem cni11;
Add following accessors:-
public void setCni11(RichCommandNavigationItem cni11) {
this.cni11 = cni11;
}
public RichCommandNavigationItem getCni11() {
return cni11;
}

Alsomodify the selection tab highlighting portion of the code.

com.ofss.fc.ui.view.brop.jar@

/com/ofss/fc/ui/view/brop/reportRequest/rb/ReportRequest_en.properties

LBL_Reconciliation = Reconciliation

12.13 Adhoc Report Generation – Screen 7775
The adhoc report can be generated using the following screen:

Figure 12–21 Adhoc Report Generation - Report Request

250 | Oracle Banking Platform Host Extensibility Guide

12.14 Adhoc Report Viewing – Screen 7779

Figure 12–22 Adhoc Report Generation - Report Generated

On filling the parameters and clicking on 'Generate' the report request gets successfully posted.

At the end of Adhoc report generation, RJS_REQUESTS gets logged with the generated report status as D ->
Done, F-> Failed.

12.14 Adhoc Report Viewing – Screen 7779
The adhoc report can be viewed using the following screen:

12 Creating New Reports | 251

12.14 Adhoc Report Viewing – Screen 7779

Figure 12–23 Advice Report

On selecting the correct user id that generated the report we get the reports generated by that user.

Now sort the Transaction Number (right most column) in the descending order.

Select the top record and click 'View Report'.

252 | Oracle Banking Platform Host Extensibility Guide

12.14 Adhoc Report Viewing – Screen 7779

Figure 12–24 View Generated Adhoc Report

The report is rendered in the front end.

12 Creating New Reports | 253

254 | Oracle Banking Platform Host Extensibility Guide

13 Security Customizations

OBP comprising of several modules has to interface with various systems in an enterprise to transfer or share
data which is generated during business activity that takes place during teller operations or processing. While
managing the transactions that are within OBP's domain, it is needed to consider security and identity
management and the uniform way in which these services need to be consumed by all applications in the
enterprise.

This is possible if these capabilities can be externalized from the application itself and are implemented within
products that are specialized to handle such services. Examples of these services include authentication
against an enterprise identity-store, creating permissions and role-based authorizationmodel that controls
access to not only the components of the application, but also the data that is visible to the user based on
fine-grained entitlements.

The following security functions are provided with the extensibility features:

n Attributes participating in access policy rules

n Attributes participating in fraud assertion rules

n Attributes participating in matrix-based approval checks

n Account validator

n Customer validator

n Business unit validator

n Adding validators

n Customizing user search

n Customizing of a ‘SendOTP | Validate OTP’ logic

n Customizing Role Evaluation

n Customizing Limit Exclusions

n Adding approval checks

13 Security Customizations | 255

Figure 13–1 Security Customizations Interface

n Oracle Identity Manager (OIM) is used for managing user provisioning.

n Oracle Access Manager (OAM) is used for managing declarative authentication and SSO.

n Oracle Platform Security Services (OPSS) is used for runtime evaluation of authn / authz.

n Oracle Adaptive Access Manager (OAAM)/Oracle Adaptive Risk Manager (OARM) is used for step-up
authentication and fraudmanagement.

n Authorization Policy Manager (APM) is used tomanage access policy definitions.

n Oracle Internet Directory (OID) is used as the identity/policy store.

A high-level security use case has the following access checks and assertions.

256 | Oracle Banking Platform Host Extensibility Guide

13.1 OPSS Access Policies – Adding Attributes

Figure 13–2 Security Use Case with Access Checks and Assertions

13.1 OPSS Access Policies – Adding Attributes
OBP uses OPSS to assert role-based access policies. Access policies are rules-based to givemore
flexibility.

Example of an access policy rule:

Grant
Role = RetailBranchOperationsExecutive
Service=com.ofss.fc.app.dda.service.transaction.DemandDepositCashT
ransactionService.depositCash
Action = perform
IF DepositCash_IsEmployeeAccount=false AND DepositCash_
IsRestrictedAccount=false

In the above example, the following facts (attributes) make up the access policy rule:

DepositCash_IsEmployeeAccount
DepositCash_IsRestrictedAccount

The security framework allows for addition to the facts that can be used in rules. The steps to do this are
mentioned in the next section.

13.1.1 Steps
Following steps are needed to add an extra attribute to an access policy rule.

13 Security Customizations | 257

13.1 OPSS Access Policies – Adding Attributes

1. Add attribute in OID under the 'Attributes' entry.

Figure 13–3 Add Attributes to Access Policy Rule

This can be done directly in OID or by using APM, as shown above.

2. Add the attribute under 'AllowedPolicyAttributes' against the particular resource.

Figure 13–4 Attribute to Access Policy Rule - Authorization Management

258 | Oracle Banking Platform Host Extensibility Guide

13.1 OPSS Access Policies – Adding Attributes

This can be done directly in OID or by using APM, as shown above. Adding this attribute under
'AllowedPolicyAttributes' ensures that the security framework executes a specified adapter to fetch
the attribute value andmake it available to the execution context.

3. Develop custom adapter to retrieve attribute value. Attribute should be structured along similar lines as
the other adapters used for the same purpose.

Example -
Attribute - CreditDecisionMatrix_
OverallAggregateApplicationAmount
Adapter -
public
com.ofss.fc.app.adapter.impl.sms.CreditDecisionAttributesAdap
ter {
public String getOverallAggregateApplicationAmount () {
//Logic to fetch overall aggregate amount
}
}

Note

The naming convention of the attribute should be as follows:

The first part of the attribute till the '-' delimiter identifies the
transaction. The remaining part with CamelCase is prefixed with a 'get'
to form themethod in the adapter.

4. Add entry in ConstraintAttributeHelper.properties to link the attribute to the adapter.

CreditDecisionMatrix_OverallAggregateApplicationAmount=
com.ofss.fc.app.adapter.impl.sms.CreditDecisionAttributesAdap
ter

5. Add/Modify access policy/rule in APM to use the extra attribute.

13 Security Customizations | 259

13.2 OAAM Fraud Assertions – Adding Attributes

Figure 13–5 Add or Modify Access Policy Rule

13.2 OAAM Fraud Assertions – Adding Attributes
OBP uses OAAM to assert fraud policies consisting of rules to identify potentially fraudulent transactions.

Attributes used in fraud identification rules:

payee_id, account_number
The security framework allows for addition to this list of facts. The steps to do this arementioned in the next
section.

13.2.1 Steps
Following steps are needed to add an attribute to an existing OAAM transaction:

1. Add the attribute under ‘AllowedPolicyAttributes’ against the particular resource.

2. Add attribute in OID under the ‘Attributes’ entry.

3. Develop custom adapter to retrieve attribute value.

4. Add entry in ConstraintAttributeHelper.properties to link the attribute to the adapter.

The above steps are exactly the same as mentioned in the previous section.

1. Add seed data in the following tables to persist themapping betweenOID attributes andOAAM
attributes.

flx_sm_fraud_txn_attributes (stores OAAM transaction key to OAAM attributemapping) and

flx_sm_fraud_assert_attributes (stores OBP attributeName - oaamAttributeNamemapping.

260 | Oracle Banking Platform Host Extensibility Guide

13.2 OAAM Fraud Assertions – Adding Attributes

Example -
insert into Flx_Sm_Fraud_Txn_Attributes (TRANSACTION_KEY,
ATTRIBUTE_NAME)
values ('payment', 'is_2fa_completed')
/
insert into flx_sm_fraud_assert_attributes (ATTRIBUTE_KEY,
FRAUD_ATTRIBUTE_NAME)
values (OutgoiOBPaymentService_Is2FACompleted', 'is_2fa_
completed')
/

2. Add/Modify fraud rules in OAAM to use the extra attribute

Figure 13–6 Add or Modify Fraud Rules in OAAM - Data Tab

13 Security Customizations | 261

13.3 Matrix Based Approvals – Adding Attributes

Figure 13–7 Add or Modify Fraud Rules in OAAM - Conditions Tab

13.3 Matrix Based Approvals – Adding Attributes
OBP uses OPSS to assert matrix-based approvals. Thematrix comprises of various facts.

Example of amatrix-based rule:

Grant
Role = CreditAnalyst
Service=com.ofss.fc.app.origination.service.lending.core.credit.de
cision.CreditDecisionApplicationService.approveDecision
Action = performWithoutApprovals
IF CreditDecisionMatrix_Margin > 1
AND CreditDecisionMatrix_CustomerExposure > 10000000

In the above example, the following facts (attributes) make up the access policy rule:

CreditDecisionMatrix_Margin
CreditDecisionMatrix_CustomerExposure

The security framework allows for addition to the facts that can be used in rules.

The steps to add facts are same as described in above section.

Note

The only difference between the policy semantics in the example
mentioned under this and last action is the 'Action'. ['perform' versus
'performWithoutApprovals']

262 | Oracle Banking Platform Host Extensibility Guide

13.4 Security Validators

13.4 Security Validators
In addition to OPSS access policies, there are additional validators that perform security checks. The sole
purpose of these validators was to give hooks to enable site specific security logic that would be complicated
enough and hence cannot be provisioned as rules.

Note

These additional validators come into effect only when the following
property is set.

APPLICATION_SECURITY_VALIDATOR=true

The role, channel, service and the attributes available in the execution context are passed to the validators.

The validators implement the interface
com.ofss.fc.app.adapter.impl.sms.validator.IExtendableApplicationValidator

There are three types of security-validation categories:

n Customer validators

n Account validators

n Business unit validators

There can bemultiple validator classes contributing to each individual category.

The package structure of the validators is required to be:

'com.ofss.fc.app.adapter.impl.sms.validator'

13.4.1 Customer Validators
This validator returns a Boolean signifying whether the logged-in user can perform a transaction on the
customer.

Step 1
Add property in ApplicationValidators.properties

com.ofss.fc.app.dda.service.account.core.DDAInquiryApplicationServ
ice.fetchBasicDetails.CustomerValidators=RestrictedAccountApplicat
ionValidator,EmployeeAccountApplicationValidator

Step 2
Develop custom validator along the lines of existing adapters.

13.4.2 Account Validators
This validator returns a Boolean signifying whether the logged-in user can perform a transaction on the
account.

Step 1
Add property in ApplicationValidators.properties

13 Security Customizations | 263

13.5 Customizing User Search

ice.fetchBasicDetails.AccountValidators=RestrictedAccountApplicati
onValidator,EmployeeAccountApplicationValidator

Step 2
Develop custom validator along the lines of existing adapters.

13.4.3 Business Unit Validators
This validator returns a Boolean signifying whether the logged-in user can perform a transaction on the
business unit.

Step 1
Add property in ApplicationValidators.properties

APPLY_BUSINESS_UNIT_VALIDATION_TO_ALL_SERVICES=false
com.ofss.fc.app.dda.service.account.core.DDAInquiryApplicationServ
ice.fetchBasicDetails.BusinessUnitValidators=BusinessUnitApplicati
onValidator
BusinessUnitValidators=GlobalBusinessUnitApplicationValidator

Step 2
Develop custom validator along the lines of existing adapters.

Note

BusinessUnit validation can be global, in which case the following
property is set.

APPLY_BUSINESS_UNIT_VALIDATION_TO_ALL_
SERVICES=true

13.5 Customizing User Search
OBP application services use SessionContext as an input parameter to set the context of the user interacting
with the system. The session-context is populated out of the user's details in OID. Across implementations,
the user metadata (objectclasses, attributes) is expected to be different resulting in the requirements to have
a custom user search capability.

The security framework provides an extension point to inject a custom search. The steps are given in the next
section.

13.5.1 Steps
SecurityConstants.properties contains attributes that enable custom user searches.

Step 1
Add properties in SecurityConstants.properties.

CUSTOM_SEARCH_
CLASS=com.ofss.fc.domain.ixface.sms.service.utils.CustomUserSearch
Adapter.retrieveUserUsingExtendableAttributes
CUSTOM_SEARCH_PARAM=nagactualaccessid

264 | Oracle Banking Platform Host Extensibility Guide

13.6 Customizing One-Time-Password (OTP) Processing Logic

Step 2
Develop custom user search adapter.

13.6 Customizing One-Time-Password (OTP) Processing
Logic
OBP uses OAAM for step-up authentication and fraud assertions. Customer is asked to enter a one-time
password (OTP) if OAAM suspects the transaction to be fraudulent. The logic to send or validate anOTP is
implemented using a custom hook. Details of the extension are given in the next section.

13.6.1 Steps
OAAM.properties contains a property that provides an extension for second factor password generation /
dispatch.

Steps:

1. Add property for the class implementing 2FA in OAAM.properties

TWO_FACTOR_AUTH_
SERVICE=com.ofss.fc.domain.ixface.oaam.TwoFactorAuthService

2. Develop custom class.

13.7 Customizing Role Evaluation
OPSS can be configured to add a user in multiple groups (enterprise roles), as a result of which a user can
havemultiple application roles. OBP uses themost significant role amongst this list to query the user's
severity configuration.

The default role-evaluator can be overridden to provide custom role evaluation logic. The steps to do this are
given in the next section.

13.7.1 Steps
SecurityConstants.properties contains an attribute that provides an extension for a custom role evaluator.

Step 1
Replace property value in SecurityConstants.properties

ROLE_
EVALUATOR=com.ofss.fc.domain.sms.entity.user.roleEvaluationCriteri
a.SimpleRoleEvaluator

Step 2
Develop custom role evaluator.

Currently, the default role evaluator returns the role that has themaximum limits for the service.

13.8 Customizing Limits Exclusions
OBP application services evaluate transaction limits for various services. The assertion logic excludes limits
checks for certain conditions. Example, if the customer is transferring funds to his own accounts. Banks have

13 Security Customizations | 265

13.9 Customizing Business Rules

site-specific requirements to exclude transactions from limits checks. The security framework provides an
extension point to inject a custom limits exclusions adapter. The steps are given in the next section.

13.8.1 Steps
LimitsExclusions.properties contains a property that enables custom limit exclusions logic for a particular
service.

Step 1
Add properties in LimitsExclusions.properties

EXCLUSION_PACKAGE_NAME=com.ofss.fc.app.adapter.impl.sms.exclusions
com.ofss.fc.app.dda.service.transaction.DemandDepositFundsTransfer
Service.
transferFundsToBeneficiaries=TransferFundsExclusionValidator

Step 2
Develop custom limits exclusions adapter.

13.9 Customizing Business Rules
BPEL approval process business rules can be configured and it is based on input authorizations raised during
transaction processing at OBP host. The steps for configuring the business rules of the approvals are given in
the below section.

13.9.1 Steps to Update the Business Rules by Browser
Following are the steps to update the business rules by browser.

266 | Oracle Banking Platform Host Extensibility Guide

13.9 Customizing Business Rules

1. Log in to BPMWorklist application of the OBP.

Figure 13–8 Log in to BPMWorklist Application screen

2. Select the 'Task' in the select box from the 'Task Configuration' tab in 'Administration'.

13 Security Customizations | 267

13.9 Customizing Business Rules

Figure 13–9 Task Configuration tab

3. In the 'Rules' tab of the 'Task Configuration' screen, select the stages of approval where the condition
in rule is required to be updated.

268 | Oracle Banking Platform Host Extensibility Guide

13.9 Customizing Business Rules

Figure 13–10 Stages of Approval

4. After stage selection, select the specific rule where the condition needs to be updated. The existing
condition can be updated or the new test condition (simple/variable) can be added.

13 Security Customizations | 269

13.9 Customizing Business Rules

Figure 13–11 Select Test Condition

5. After selection of the test condition, the new expression row appears where the variable, the operator
and the expression value can be selected.

270 | Oracle Banking Platform Host Extensibility Guide

13.9 Customizing Business Rules

Figure 13–12 Select Values

6. On selection of the search button next to the variable select box, the condition browser opens where
the specific task can be selected.

13 Security Customizations | 271

13.9 Customizing Business Rules

Figure 13–13 Select Specific Task

7. Update the variable, operator and value of the expression in a row.

272 | Oracle Banking Platform Host Extensibility Guide

13.9 Customizing Business Rules

Figure 13–14 Update Values

8. Save the updated rule using the save button in the left sidemenu.

13 Security Customizations | 273

13.9 Customizing Business Rules

Figure 13–15 Save the Updated Rule

9. Commit the changes in the rule by clicking the commit button.

274 | Oracle Banking Platform Host Extensibility Guide

13.9 Customizing Business Rules

Figure 13–16 Commit the Changes

Note

'Ignore this participant' check box is available on the screen for ignoring
the specific stage. The particular stage is then ignored while
consideration of the rules implementation in the approval process.

13.9.2 Steps to Update the Business Rules in JDeveloper
Following are the steps to update the business rules in JDeveloper.

Step 1
Configure the JDeveloper in the customization option and the particular process jar import as the SOA project
in the customizable mode. The details of this step are explained in this document in the section SOA
customization.

Step 2
Expand the Business Rules folder of your project. You will see two .rules files in it. One will be
<<HumanTaskName>>Rules.rules file and the other will be <<HumanTaskName>>RulesBase.rules file.
Double Click and open the <<HumanTaskName>>Rules.rules file. The existing approval stages and rulesets
will be available in the file.

13 Security Customizations | 275

13.9 Customizing Business Rules

Figure 13–17 Expand Business Rules

Step 3
Create a new stage in the format 'ST<Stage Number>_PT1_RS' by clicking the '+' button in the Rulesets.
The new rules/decision table can be added to a stage.

276 | Oracle Banking Platform Host Extensibility Guide

13.9 Customizing Business Rules

Figure 13–18 Create New Stage

Step 4
Add the new rule by clicking the '+' button on the stage. The existing rule can also be added/modified in the
existing stage.

13 Security Customizations | 277

13.9 Customizing Business Rules

Figure 13–19 Add New Rule

Step 5
Populate the rule with the conditions in 'if' and 'then' block.

278 | Oracle Banking Platform Host Extensibility Guide

13.9 Customizing Business Rules

Figure 13–20 Populate the New Rule

Step 6
Deploy the project jar as explained in this document in the section SOA customization.

Note

All the rules should have the final 'THEN' statement with the return
type as 'retract Task'. 'retract Task' makes sure that if the condition of
the rule is satisfied then the second rule should not be evaluated else
the flow will execute the entire ruleset. It is alsomandatory to have the
last rule with the final 'THEN' statement as 'call IgnoreParticipant'.
This is done to bring the control out of the ruleset.

13 Security Customizations | 279

13.9 Customizing Business Rules

Figure 13–21 Deploy Project Jar

280 | Oracle Banking Platform Host Extensibility Guide

14 Loan Schedule Computation Algorithm

OBP application provides the extensibility by which the additional loan schedule computation algorithm can
be added or customized based on client's requirement.

14.1 Adding a New Algorithm
For adding a new algorithm following additions need to be done.

LoanCalculationMethodType.properties contains list of available loan stage algorithms in the system in
the form of key-value pairs. For example, ARM=ARM

This list is used as part of screen LNM43 to populate a drop down called Computation Formula.

An entry has to bemade in this file to appear as a choice in the drop-down list.

Figure 14–1 Add New Algorithm

This screen is used to create a new Installment Rule. For example: ABC. We can choose the new algorithm
for the new rule.

14 Loan Schedule Computation Algorithm | 281

14.1 Adding a New Algorithm

Figure 14–2 Create New Installment

Screen LNM98 is used to create new schedule codes from existing instalment rules. A new schedule code
can bemade using the new instalment rule created above.

A schedule generator class is created to implement a schedule code. The property file
ScheduleCalculator.properties stores this relation in the form:

Schedule_Type_Code=Schedule_Calculator_Class

If a new schedule generator class is created for the new schedule code above, an entry in this file has to be
made.

Example: IOI-EIPI-PMI_IntOnly-Month_Pr-Month_Ann=
com.ofss.fc.domain.schedule.loan.generator.NewPrincipalRepaymentSc
heduleGenerator;

The key is the SCHEDULE_CODE column in the table FLX_SH_SCHEDULE_TYPE_B.

ThePrincipalRepaymentScheduleGeneratorFactory reads this property file and creates an instance of the
schedule generator class associated with the schedule type code passed. The following code snippet shows
how it is done

IPrincipalRepaymentScheduleGenerator calculator = null;
String calculatorClassName = calculators.get(scheduleTypeCode);
calculator = (IPrincipalRepaymentScheduleGenerator)
ReflectionHelper.getInstance() .getClassInstance
(calculatorClassName);

// If schedule calculator is not found then do nothing

282 | Oracle Banking Platform Host Extensibility Guide

14.1 Adding a New Algorithm

if (calculator == null) {
calculator = new PrincipalRepaymentScheduleGenerator();
}

Currently, in the application this property file is empty and hence an instance of
PrincipalRepaymentScheduleGenerator is returned by default.

The new schedule generator class has to implement the interface IPrincipalRepaymentScheduleGenerator
which is the base for all schedule generators.

The important methods in it are:

public SortedMap<Integer, PrincipalRepaymentPeriod> defineStages
(SortedMap<Integer, PrincipalRepaymentPeriod> repaymentStages,
AccountScheduleAttributesDTO accountParameters, Money
amountForScheduleGeneration, Date onDate);
public LoanScheduleCalculatorOutputData defineSchedule(Date
definitionDate, SortedMap<Integer, PrincipalRepaymentPeriod>
repaymentStages, AccountScheduleAttributesDTO accountParameters,
SortedMap<LoanInterestType, List<NetRateDTO>> interestRates, Money
mountForScheduleGeneration);
public LoanScheduleCalculatorOutputData generateRepaymentRecords
(Date generationDate, SortedMap<Integer, PrincipalRepaymentPeriod>
repaymentSchedule, AccountScheduleAttributesDTO accountParameters,
Money totalPrincipalToRepay, SortedMap<LoanInterestType,
List<NetRateDTO>> interestRates, List<PrincipalScheduleTransaction>
scheduleTransactionHistory, SortedMap<Date,
PrincipalScheduleInterestBase> interestBaseHistory, SortedMap<Date,
Money> feeDetails);

Themethod generateAndSavePrincipalSchedule() of ScheduleApplicationService creates and processes the
instance of a schedule generator as follows:

IPrincipalRepaymentScheduleGenerator scheduleGenerator =
PrincipalRepaymentScheduleGeneratorFactory.getInstance
().createScheduleGeneratorInstance
(accountParameters.getScheduleTypeCode());

Themethods in the schedule generator call the business logic for the instalment rules (stage algorithms) part
of the schedule code. This logic is written in a Stage generator class. New Stage generator class has to be
created for the new algorithm created above.

For example, EPIARMRepaymentStageGenerator.class is created for EPI
and ARM.

This class has to implement interface IPrincipalRepaymentPeriodGeneratorwhich is the base for all stage
generators. The important methods in it are:

public void defineStage(LoanRepaymentStageDTO repaymentStage);
public void define(LoanRepaymentStageDTO
repaymentStage,AccountScheduleAttributesDTO accountParameters,Date
definitionDate, List<NetRateDTO> interestRates, SortedMap<Integer,

14 Loan Schedule Computation Algorithm | 283

14.2 Consuming Third Party Schedules

LoanRepaymentStageDTO> allRepaymentStages, SortedMap<Date,
PrincipalScheduleInterestBase> interestBaseHistory,
List<PrincipalScheduleTransaction> scheduleTransactionHistory);
public SortedMap<Date, LoanRepaymentRecordDTO> generate
(LoanRepaymentStageDTO repaymentStageToBeGenerated,
AccountScheduleAttributesDTO accountParameters, Date
generationDate, List<NetRateDTO> interestRates, SortedMap<Integer,
LoanRepaymentStageDTO> allRepaymentStages, SortedMap<Date,
RepaymentDate> repaymentDates, SortedMap<Date,
LoanRepaymentRecordDTO> allRepaymentRecords, SortedMap<Date,
PrincipalScheduleInterestBase> interestBaseHistory,
List<PrincipalScheduleTransaction> scheduleTransactionHistory,
SortedMap<Date, Money> feeDetails);

The entry for the new Stage generator class has to bemade inStageCalculator.properties.
For example,
ARM=com.ofss.fc.domain.schedule.loan.generator.EPIARMRepaymentStag
eGenerator

ThePrincipalScheduleRepaymentPeriodGeneratorFactory class reads this property file and based on the
installment rule passed as parameter creates an instance of its corresponding stage generator class. The
following code snippet shows it

IPrincipalRepaymentPeriodGenerator stageGenerator =
PrincipalScheduleRepaymentPeriodGeneratorFactory.getInstance()
.createStageGeneratorInstance(repaymentStage.getInstallmentRule())

14.2 Consuming Third Party Schedules
As mentioned above the PrincipalRepaymentScheduleGeneratorFactory reads the property file
ScheduleCalculator.properties which has entry for the schedule generator class to be used for a schedule
code. For using third party schedule algorithms, an entry in this file has to bemade against the required
schedule codes.

IOI-EIPI-PMI_IntOnly-Month_Pr-Month_Ann=
com.ofss.external.ScheduleAlgoExt.XYZScheduleGenerator;

284 | Oracle Banking Platform Host Extensibility Guide

15 Facts and Rules Configuration

This chapter explains the facts and rules configuration details.

15.1 Facts
Fact (in an abstract way) is something which is a reality or which holds true at a given point of time. Business
rules aremade up of facts.

A fact can be classified in two ways:

n Literal Fact - Any number, text or other information that represents a value. It is a fixed value. For
example, 100, 2.95, "Mumbai".

n Variable Fact - A fact whose value keeps changing over a period of time For example, Account
Balance, Product Type.

For example, If a customermaintains an AverageQuarterly Balance of Rs.10,000 then waive off his quarterly
account maintenance fees. Here, the AverageQuarterly Balance is a variable fact while the Rs.10,000 is a
literal fact.

15.1.1 Type of Facts
There are two types of facts:

n Direct Facts with input name value pair

n Derived Facts

Services will be exposed for various operations on the facts. These services are broadly classified into two
types:

n Fact Inquiry Service

n Fact Derivation Service

For deriving the fact value, different type of datasource can be used:

n Java DataSource - Derivation from Java class

n JPQLDataSource - JPQLQuery column

n JDBC DataSource - SQLQuery column

n DbFunction DataSource - Derivation from database function

Fact Definition can be further categorized into:

n Fact Value Definition - Definition to Derive Fact Value. It is usedmostly in Rule Execution.

n Fact Enum Definition - Definition to Derive Permissible values for a fact. It is usedmostly in Rule
Creation.

15 Facts and Rules Configuration | 285

15.1 Facts

15.1.2 Facts Vocabulary
Facts Vocabulary is a list or collection of all facts pertaining to a specific field or domain. A standard
vocabulary of facts aids users in defining their business rules. For example, the Facts Vocabulary of the
Banking domain can contain common and familiar facts such as Account Balance, Customer Type, Product
Type, Loan-To-Value Ratio. The Facts Vocabulary of the Cards domainmay contain common facts such as
Total Credit Limit, Available Credit Limit, Available Cash Limit.

A vocabulary is defined for variable facts. Each fact has a definition and can have source information.

Definition

The fact definition indicates common properties of the fact such as its name, its data type, which domain,
domain category and group it belongs to, key for retrieving value and a brief description.

Variable facts would be defined for a domain and a domain category. Domain categories are the sub-systems
inside a domain. For example, Lending, Term Deposits, Demand Deposits are the categories of Banking
domain. There are some variable facts which would be common across all the categories in a given domain.
For example, Customer and Bank data is common for all the categories of Banking domain. Such facts can be
classified under a special category called "Global".

The facts are further categorized under various groups. One fact can belong to one or more Groups. For
example, In a Banking domain, Customer Type, Birth Date, Gender are Global facts belonging to the group
Individual Customer Details. Account Balance, Account Opening Date are facts in Lending category
belonging to the group Account Details. Loan-to-value (LTV) ratio, Sanctioned Amount are Facts in Lending
category and belong tomultiple groups such as Consumer Loan, Home Loan, Agriculture Loan. There are
some variable facts which do not really fall into any specific group, such facts are classified under a special
group called "Others".

A variable fact value can be received as input from the consumer of eRules in the form of key-value pair, the
key here is defined as RetrievalKey. The fact will also have a data source for value derivation in case the fact
value is not an input.

Some variable facts can have a permissible list of values defined and the rule creator will be restricted to use
only those values which are defined in the permissible list of a given fact. All facts will have a FactValueType
defined as eitherEnumerated (indicates that the fact has a permissible list of values) orOpenEnded (indicates
that the fact value is a free text). For facts with FactValueType as Enumerated, data source information will
be defined in the vocabulary to derive the list of values.

Variable facts will have a grouping based on BusinessDataType. For example, Variable facts like Transaction
Amount, Sanctioned Amount, and Disbursed Amount can be grouped under "Amount". Variable facts like
Available Balance, Book Balance belong to "Balance" BusinessType and so on.

These BusinessDataType will in turn have PrimitiveDataType. For example, Amount and Balance will have
PrimitiveDataType as double.

With the help of BusinessDataType grouping a list of facts belonging to a particular group can be displayed for
user selection while defining rules, rate charts, policies and so on. During actual rule execution the respective
PrimitiveDataType (that is, int, double, String and so on) of the BusinessDataType will be used.

Literal facts will only have aPrimitiveDatatype.

Source

Some facts can be derived, if they are not received as input. Also associated with some facts is a list of
permissible values for the fact at the time of rule/policy definition. All these information forms the part of
source data. The Fact Derivation layer is responsible for deriving the value of a fact and the list of permissible
values for the fact based on source information defined in the vocabulary.

286 | Oracle Banking Platform Host Extensibility Guide

15.1 Facts

Deriving Enumeration (applicable list of values) for a Fact

A Variable fact can hold any value at a given point of time. But some can have a standard set of applicable
values defined and the value held by such facts would be always within the range of this list of values.

For example, Account Balance as a variable fact can hold any value at a given point of time, a set of values
cannot be defined for such facts. Hence, no list of permissible values will be defined for Account Balance.
However, the variable fact Customer Gender can have only one of two possible values namely - Male or
Female.

While defining the rules, the permissible list of values will be derived for such facts and user selection will be
restricted to this list.

Deriving Value for a Fact

During rule execution, a set of fact information will be sent by the consumer of eRules in the form of key-value
pair. But this might not be a complete set of fact information required for executing pricing rules. Hence some
facts will have to be derived if they are not received as input.

During rule execution, the required facts would be determined, value will be fetched from RetrievalKey of the
fact if received as input else the value will be derived.

15.1.3 Generation of Facts using Eclipse Plug-in
The fact objects can be generated either by populating the database tables directly or by using the eclipse
plug-in. This plug-in is created for fact generation purpose in OBP application.

A local host server needs to be configured in eclipse before processing for configuration of the fact plug-in. For
fact generation purpose, the following steps need to be followed.

Get the Fact Plugin from the development team.

Put the latest fact generation plugin (com.ofss.fc.util.plugin.fact_x.x.x.jar) in the plug-in folder of eclipse.

Restart Eclipse

15 Facts and Rules Configuration | 287

15.1 Facts

1. In eclipse, go toWindow -> Preferences.

Figure 15–1 Select Window Preferences

2. Now in Preferences Window, go toOBP Plugin Development -> Fact.

288 | Oracle Banking Platform Host Extensibility Guide

15.1 Facts

Figure 15–2 Window Preferences - OBP Plugin Development

3. Enter the values as mentioned:

n Application Server URL: Local Host Server Listener URL

Example: http: //localhost:9090/com.ofss.fc.channel.branch/HTTPListener

n Presentation Server URL: TokenGenerator Application URL

Example: http: //127.0.0.1:8001/TokenGenerator/HTTPListener

15 Facts and Rules Configuration | 289

15.1 Facts

If using the plug-in in local eclipse workspace, it will not be used, but a valuemust be provided,
you can use it from example value.

For security configured environment, it will be used, and then it should be provided properly.

n Bank Code: Bank code (Example: 08)

n Branch Code: Branch Code (Example: 089999)

n User Id: username (Example: ofssuser)

n Password: Password (Example: welcome1)

Figure 15–3 Enter the Preferences Fact values

290 | Oracle Banking Platform Host Extensibility Guide

15.1 Facts

4. Now click Apply, and then click Ok.

5. Open Fact.properties andmodify:

n aggregateCodeFilePath: The location of host workspace.

n sourceFilePath: The location of src directory of com.ofss.fc.fact project.

Figure 15–4 Fact Properties - aggregateCodeFilePath

15 Facts and Rules Configuration | 291

15.1 Facts

Figure 15–5 Fact Properties - sourceFilePath

6. Now start the Host server.

7. In eclipse, go toWindow -> Open Perspective -> Other.

292 | Oracle Banking Platform Host Extensibility Guide

15.1 Facts

Figure 15–6 Start Host Server

8. Now in Open Perspective window select Fact.

9. Click Ok.

15 Facts and Rules Configuration | 293

15.1 Facts

Figure 15–7 Select Open Perspective value

It will open Fact Explorer perspective, where Fact Vocabulary is available.

294 | Oracle Banking Platform Host Extensibility Guide

15.1 Facts

Figure 15–8 Fact Explorer

10. Now refresh and expand Fact Vocabulary. Expanding Fact Vocabulary will show theDomain names.

15 Facts and Rules Configuration | 295

15.1 Facts

Figure 15–9 Fact Vocabulary

Each Domain contains its Domain Category names.

296 | Oracle Banking Platform Host Extensibility Guide

15.1 Facts

Figure 15–10 Domain Category

Each Domain category contain its Fact Groups

15 Facts and Rules Configuration | 297

15.1 Facts

Figure 15–11 Fact Groups

Each Fact Groups contains its Facts.

298 | Oracle Banking Platform Host Extensibility Guide

15.1 Facts

Figure 15–12 Facts

11. To see the details of any fact, just double-click it. The details will be shown in a fact window containing
some tabs. Move to each tab to show the details.

15 Facts and Rules Configuration | 299

15.1 Facts

Figure 15–13 Business Definition Tab

Figure 15–14 Value Definition Tab

300 | Oracle Banking Platform Host Extensibility Guide

15.1 Facts

Figure 15–15 Enum Definition Tab

15 Facts and Rules Configuration | 301

15.1 Facts

Figure 15–16 Aggregrate Definition Tab

302 | Oracle Banking Platform Host Extensibility Guide

15.1 Facts

Figure 15–17 Aggregate File Tab

12. CreatingNew Fact: Right-click any domain Category in which Fact is to be created. Go to
Maintenance -> Add.

15 Facts and Rules Configuration | 303

15.1 Facts

Figure 15–18 Creating New Fact - Add

13. Enter required details for the facts in the new fact window.

All fields of Business definition tab are required for creation of any fact.

Fields of other tabs may be or may not be required. It depends on the fact to be created.

304 | Oracle Banking Platform Host Extensibility Guide

15.1 Facts

Figure 15–19 Creating New Fact - Fact Business Definition

15 Facts and Rules Configuration | 305

15.1 Facts

Figure 15–20 Creating New Fact - Domain Group

14. Enter the values in the fields and press CTRL+S, click Yes to save and fact will be created.

Figure 15–21 Saving New Fact

306 | Oracle Banking Platform Host Extensibility Guide

15.1 Facts

Figure 15–22 Saving New Fact - Fact Added

15. Modification of Existing Fact: Tomodify an existing fact, right-click the fact -> Maintenance -> Modify.

It opens the fact details in editable mode. Change whatever required and then save it using
'CTLRL+S'.

Fact Perspective also provide following facilities:

n MaintenanceOperations on Fact

n Add

n Modify

n Inquire

n Fact Derivation Test

n Fact Value Derivation Test

n Fact Enum Derivation Test

n Fact Import - Import Fact from File Store to Database store

n Fact Export - Export Fact from Database store to File store.

15.1.4 Object Facts
Apart from the normal facts that have to bemaintained explicitly, there is a way to define an object as a fact.
The idea behind having object fact is to ease the fact definition phase when a particular class holds maximum
attributes that are likely to be used in a given rule along the execution path. The advantages are as follows:

n No need of having individual fact definitions for each of the attribute in the class.

n The entire class can bemade an object fact and the fact derivation takes the responsibility of scanning
through this class object for fact value.

n The caller module will have the object already loaded inmost of the scenarios.

n Ease of passing the facts through fact context, no need to remember the fact IDs of all the facts to a
granular level. Once the parent fact is passed in the fact context with the class name as the fact id, the
attributes are automatically scanned for the respective values as required.

Designate a class as Object Fact

Tomake a class an object fact, an entry for it needs to bemade in the table: "flx_fa_object_facts_b".

15 Facts and Rules Configuration | 307

15.1 Facts

Figure 15–23 Designate Class as Object Fact

Object Fact in UI

The usage of the object fact will be same as any other fact in the UI.

308 | Oracle Banking Platform Host Extensibility Guide

15.1 Facts

Figure 15–24 Object Fact in UI

Fact definitions for Object Fact

Building the fact definitions for an object fact is done as follows:

1. Once a class is designated as an object fact, it will be looked up at the time of loading the fact
vocabulary.

2. The individual attribute access methods (getters or Boolean access methods that is, ones that start
with "is") will be scanned to get the name of the attributes.

3. Once the attribute names and their data types are obtained, the FactBusinessDefinition object is
created for it.

4. A variable fact object is also created and registered in the fact registry on the host.

5. The step 3 and 4 will be recursive, done for all the nested objects with the object fact till the leaf fact is
found (that is, the one that can be used in the rule for instance data type could be any Java data types
like String or Integer, or the OBP data types likeMoney or Duration)

15 Facts and Rules Configuration | 309

15.2 Business Rules

15.2 Business Rules
Business Rules are defined for improving agility and for implementing business policy changes. This agility,
meaning fast time tomarket, is realized by reducing the latency from approved business policy changes to
production deployment to near zero time. In addition to agility improvements, Business Rules development
also requires far fewer resources for implementing business policy changes. This means that Business Rules
not only provides agility, it also provides the bonus of reduced development cost.

15.2.1 Rules Engine
A rule engine is amechanism for executing 'business rules'. Business rules are simple business-oriented
statements that encode business decisions of some kind, often phrased very simply in an if/then conditional
form.

For instance, a business rule for a Banking systemmight be: Given a Customer and his location, if all of the
following conditions aremet:- The Customer is High Net worth Individual (HNI) - The Location is Metro - The
Location is not Delhi{_}. The consequence is a 20% Discount in Application fee for Home loan. These
business rules are not new: they are the business logic that is the core of many business software
applications. These rules are expressed as a subset of requirements. They are statements like "give a
twenty-percent discount to non-Delhi Metro HNI Customers"

The primary difference with a rule engine is the way these rules are expressed; instead of embedding them
within the program, these are encoded in business rule form.

Rule engines are not limited to execution; they often comewith other tools to manage rules. Enterprise Rule
Engine has all the options such as creation, deployment, storage, versioning and other such administration of
rules either individually, or in groups.

15.2.2 Rules Creation by Guided Rule Editor
Any kind of rule can be created using this tool. User can freely enter business rules in text area, throughout
the rule creation tool.

Standard Rule created in GRE comprises of following elements:

[mandatory]
If
[condition] {AND/OR [condition]}*
Then
[Action]+
[optional]*
Else If
[condition] {AND/OR [condition]}*
Then
[Action]+
[optional]?
Else
[Action]+
where
* = 0 or more Occurrence
?= 0 or 1 Occurrence
+= 1 or more Occurrence

310 | Oracle Banking Platform Host Extensibility Guide

15.2 Business Rules

Features of Guided Rule Editor (GRE)

The features of GRE are:

n The 'if' block is mandatory block at the beginning of the structure.

n If (true) kind of condition is not supported. The condition should be comprised of 'LHS operator RKH'.
There is parenthesis support in the UI. But you have to add it manually. Validation of parenthesis is
supported.

n Nested 'if' is not supported from UI as of now.

n Conditions and actions are added by clicking the '+' button.

n After adding Condition user can add 'AND/OR Condition' by clicking '+' button at the End of Condition

n Different types of Actions can be added under 'Then'.

n Any number of 'Else if' can be added after 'If'.

n The condition for 'Else if' should differ from its previous 'if' or 'Else if' condition. Warning should be
shown to user in this case.

n At most one 'Else' condition can be added to this 'if-else if-else' structure.

n No 'Else if' can be added after 'Else'.

n Real time rule structure preview in the bottom panel.

n Rule template / fragment for re usability.

n Facts will be used to create the rules

15.2.3 Rules Creation By Decision Table
Decision tables are a precise yet compact way tomodel complicated logic. Decision tables, like if-than-else,
associate conditions with actions to perform. But, unlike the control structures found in traditional
programming languages, decision tables can associate many independent conditions with several actions in
an elegant way.

Example:

Conditions & its alternatives Actions

Customer
Type

Location
Type Location Discount

HNI Metro Mumbai 20% of App. fee

HNI Metro Delhi No discount

HNI Jaipur No discount

Table 15–1 Example of a Decision Table

The features of Decision Table are:

n The decision table contains rows and columns. Each row is considered to be a rule. In normal
circumstances, the decision table is evaluated from top to bottom sequentially evaluating the various
rules. It does not stop even if a rule fires. However, there is an option to stop processing of the decision

15 Facts and Rules Configuration | 311

15.2 Business Rules

table in case a rule is satisfied. There should be a special fixed column in the decision table (towards
the right) which allows the decision table author to stop further evaluation of rules in case the current
rule fires.

n Decision table should be expandable, that is, Rows and columns can be added dynamically.

Various functions for column and row manipulation should be available:

n AddColumn After

n AddColumn Before

n AddRow Above

n AddRow Below

n Delete Column

n Delete Row

n MoveColumn

n MoveRow

n Sort ColumnData Ascending

n Sort ColumnData Descending

n ColumnHeaders indicate condition / action

n Decision table should be editable to input data/conditions/actions

If a condition or action has range the column should be split in to two columns to accept theminimum and
maximum values. Option to automatically fill series of values. When clicked on row, a brief description about
the condition should appear. Decision table will have brief description for the conditions and actions setup.
Import and export data between Decision Table and Excel Spread Sheet.

15.2.4 Rules Storage
Rules created are stored in database tables as conditions and actions first, then these database tables are
used to create executable rule in java programming language and compiled.

ActionID Outvariable Expression Datatype

ACTION1 Discount Fee 0.2*App Fee Double

ACTION2 Discount Fee 0 Double

ACTION3 Discount Fee 0 Double

Table 15–2 Actions

Condit
ionID

LeftExpr
ession

Relational
Operator

RightExpr
ession

LinkedCon
ditionID

LinkedCondition
alOperator

Actio
nId

Rul
eID

Ver
sion

CON1 Custome
rType == HNI CON2 && ACTI

ON1
RU
LE1 1

Table 15–3 Conditions

312 | Oracle Banking Platform Host Extensibility Guide

15.3 Rules Configuration in Modules

Condit
ionID

LeftExpr
ession

Relational
Operator

RightExpr
ession

LinkedCon
ditionID

LinkedCondition
alOperator

Actio
nId

Rul
eID

Ver
sion

CON2 Location
Type == METRO CON3 && RU

LE1 1

CON3 Location == MUMBAI RU
LE1 1

CON4 Custome
rType == HNI CON5 && ACTI

ON2
RU
LE1 1

CON5 Location
Type == METRO CON6 && RU

LE1 1

CON6 Location == DELHI RU
LE1 1

CON7 Custome
rType == HNI CON8 && ACTI

ON3
RU
LE1 1

CON8 Location == JAIPUR RU
LE1 1

15.2.5 Rules Deployment
Rules are put together in compiled java class which are stored in jar file and deployed on the server at runtime.
This deployed jar is available for applications which are going to execute the rules.

15.2.6 Rules Versioning
Each time rule is modified new version is created for the rule and stored.

RuleID Version Name Effective Date

RULE1 1 DiscountRule 01/01/2009

RULE1 2 DiscountRule 31/03/2009

Table 15–4 Rules Versioning

15.3 Rules Configuration in Modules
Rules can be configured for multiple modules andmultiple screens. The list of screens where the rule
definition taskflows are used is mentioned below:

n Facts are used by configuring the fact context. Fact Context contains information about interacting
Module. This need to be set to interact with Fact layer. Fact Context has been categorized at Domain
Level.

For example, BankingFactContext will be used in Banking domain. This context has setters method
for Facts which are generic in that domain. For example, BankingFactContext has setAcountId
method. Interactingmodule need to fill maximum information available. Thesemethods are setters for
Facts which will always has input likeAccountId, PartyId, TransactionAmount and so on.

n It is possible that at the time of interaction, Module already has some derivable Facts which are not
going to change in the interaction. For example, LnAccountProduct at the time of Interest calculation.

15 Facts and Rules Configuration | 313

15.3 Rules Configuration in Modules

n Module will send such Facts using addFactmethod, using _retrievalKey of the Fact referring Fact
vocabulary. The benefit of sending such facts is these Facts won't get derived again. At the time of
Fact Derivation, if RetrievalKey is present in the input FactMap, same value will be returned as a Fact
value. If RetrievalValue is not present the Fact will be derived.

n Module will sendmaximum Fact information available at the time of interaction for better performance.

For example, at the time of Loan Account Opening, Pseudo code will look like:

// create fact context.
BankingFactContext lnFactContext = new BankingFactContext
("LN");
lnFactContext.setPartyId(001);
// Set max available information
lnFactContext.addFact("LnAppliedAmount",2000);
lnFactContext.addFact("LnProductType","Home");
lnFactContext.addFact("LnRiskCategory",1);
lnFactContext.addFact("CustType","VIP");

At the time of CashTransaction Event, code will look like:

// create fact context.
BankingFactContext casaFactContext = new BankingFactContext
("CASA");
casaFactContext.setPartyId(003);
casaFactContext.setAcountId("111111111111");
casaFactContext.setTransctionAmount(new BigDecimal(122));
casaFactContext.setTransactionCurrency(104);
casaFactContext.setTransactionAmountInAcy(new BigDecimal
(122));
// Set max available information
casaFactContext.addFact("CustType", "VIP");
casaFactContext.addFact("CASAAccountType", "Saving");

15.3.1 Generic Rules Configuration
Generic Rules can be configured through the screen RL001 where the new rule can be defined or the existing
rule can be updated for multiple domains and domain category. The authoringmode of rule creation can be
chosen as GRE or Decision Table.

314 | Oracle Banking Platform Host Extensibility Guide

15.3 Rules Configuration in Modules

Figure 15–25 Generic Rule Configuration

15 Facts and Rules Configuration | 315

15.3 Rules Configuration in Modules

Figure 15–26 Rule Author - Decision Table

Different expressions can be defined in the expression builder screen. The expression once defined can also
be used as one of the expressions in GRE.

316 | Oracle Banking Platform Host Extensibility Guide

15.4 Rules Migration

Figure 15–27 Rule Author - Expression Builder

15.4 Rules Migration
This section describes the rules migration.

15.4.1 Rules Configured for Modules
Rule taskflows can be added to different modules. User can set up different rules based on the

screen requirements.

Module Screen Rule Type Rule Description

Alerts AL04 - Alert
Maintenance GRE

User can create the new message template rule or use
the existing rule. In this rule, themessage template of
the alert is selected based on the selected rule criteria.
For example, if there is a particular party id, then the
specific alert needs to be sent.

Content
CNM03 -
Document
Policy
Definition

Decision
Table

There are two types of rules (Inbound Rule and
Outbound Rule) defined for each event in the document
policies. These rules primarily define the checklist of
documents based on different input values. The
inbound rule are defined for the scenario of the

Table 15–5 Details of Configured Rules in Modules

15 Facts and Rules Configuration | 317

15.4 Rules Migration

Module Screen Rule Type Rule Description

documents being inputted to the system and the
outbound rule are defined for the scenario of the
documents being retrieved from the system and
displayed to the end user.
For example, In document policy of new applications,
there is a event for identity verification. The inbound
rule can be defined for the category of the documents
which are required to be uploaded for the verification
purpose on the basis of the Party Agency Type and the
Party Type.

Pricing PR006 - Price
Definition

Generic Rule
Author

Price can be rule based that is, amount of fee to be
charged or price code to be charged comes from rule

Pricing
PR005 -
Interest/Margin
Index Code
Definition

Generic Rule
Author

Interest Index can be Rule Based i.e. Interest rate to be
applied comes as outcome of rule.

Pricing
PR004 - Rate
Chart
Maintenance

Generic Rule
Author

Rate Chart can be Rule Based i.e. Interest index to be
used comes as outcome of rule.

Pricing
PR007 - Price
Policy Chart
Maintenance

Decision
Table

Price policy chart internally gets stored as Rule. It
basically defines Prices/RateCharts applicable when
criteria is satisfied which is mentioned in rule.

Pricing
PR040 - Fee
Computation
Analysis

Generic Rule
Author

This screen provides analysis as how the fee for
particular transaction (happened in past) was
computed.
In case of Rule Based Fees charged in transaction,
this screen displays details of that rule along with input
fact values used during rule evaluation.

Pricing
PR017 -
Interest Rate
Derivation
Analysis

Generic Rule
Author

This screen provides analysis as how the interest rate
for particular account was computed.
In case of Rule Based Rate Chart and Rule Based
Index, this screen displays details of that rule along
with input fact values used during rule evaluation.

Tax
TDS01 - Tax
Parameter
Maintenance

Decision
Table

This rule is used tomaintain the exemption limit and
that exemption limit will be used at the time of tax
computation.

Product
Manufacturing

PM011 -
Define Interest
Rule

GRE/
Decision
Table

In the Rule and Expression task flow is consumed to
create Rule or Expression, which is used to derive the
BaseForInterest for Calculation of Interest.
During EOD, module send facts which is used derive
the BaseForInterest by executing the Rule or
Expression whichever is attached to the IRD.

Asset
Classification

RL001 - Rule
Author GRE

This rule is used to derive the Asset Classification
code of an account during the Account level
classification batch shell. The facts will be the days
past due date of various outstanding arrears. The rules
will be created under 'LN' and 'CS' and linked to a plan
in Asset Classification Plans (NP002).

318 | Oracle Banking Platform Host Extensibility Guide

15.4 Rules Migration

Module Screen Rule Type Rule Description

Rule for Facility-level classification: This rule is
maintained only if the 'Applicability level' in NP001 is
'Facility'. This rule is used to derive the Classification
code for a Facility during the Facility-level batch
classification. The rule will be created under the
Domain Category 'AC' and is linked via Asset
Classification Preference (NP001).

Collections RULE01 -
RuleSet

GRE/Decision
Table

Collectionmodule's rules are defined as RuleSet. The
RuleSet can be incorporated for the batch processing
to filter accounts coming to collection.
In RuleSet screen, multiple rules can be combined
together as a single object called ruleset. The RuleSet
functionality in rule engine provides the user with the
facility to design the sequence of execution of rules
wheremultiple rules need to be asserted for the same
set of inputs. User would be able to select and wire the
already existing rules and their sequence as per his/her
requirement.
There can be output dependent rules defined. For
example,
Rule 1 is: If(FACILITY_ID equal to TEST_FACILITY_
ID)
Then Account Type equal to FIXED
Else If (FACILITY_ID equal to AAA)
Then Account Type equal to 0
Rule 2 is: If (ACCOUNT_TYPE equal to FIXED)
Then ARS_ASSESSED_AMOUNT equal to 70000
In the above case, rule 2 will be executed only if rule 1
satisfies the condition.

15 Facts and Rules Configuration | 319

320 | Oracle Banking Platform Host Extensibility Guide

16 Composite Application Service

OBP Application provides with the functionality of adding composite application services which call multiple
application services in one request. The transactions in these composite application services are called
composite transactions and aremade by composing the single transaction out of themultiple APIs
transaction that gives the effect of single transaction.

Using APIs, single transaction can be composed of multiple transactions using very little effort. However, this
cannot be done at run time. Following points have to be taken in to account while making a new composite
transaction out of existing API transactions:

n Both the transactions should be passed in the same session context except overridden warnings.
Overridden warnings from one transaction are passed as an input to next transaction.

n Decision of whether to commit the transaction or rollback the samemust be explicitly handled by the
composite transaction. The beginning and closing of interaction should be handled by the composite
transactions.

For the transaction control of the transactionmanager, there are two defined patterns:

n With Interaction.begin

l The interaction begins to ensure that the transaction reference number is maintained same
across all participating APIs

l Required for supporting reversal of composite financial APIs

l Context information for entire call is maintained and used.

l Similar to any other API

n With TransactionManager

l Scope restricted to database transaction

l All APIs in the composite have the same commit scope

l Unique transaction reference generated for each API

l Can be thought of as a workflow with APIs participating in the sameDB commit scope

l The composite transactions can be handled in two scenarios:

o Callingmultiple APIs in the samemodule

o Callingmultiple APIs in different modules by making the adapter call

16.1 Composite Application Service Architecture
The following depicts the sequence diagram for the composite transactions where two of the domain service
calls are shownwhich can be extended tomultiple domain service (1..N) calls. After every domain service
call, 'isTransactionFailure()' call needs to bemade to check the transaction status before proceeding for the
next domain service call.

16 Composite Application Service | 321

16.2 Multiple APIs in Single Module

Figure 16–1 Composite Application Service Architecture

16.2 Multiple APIs in Single Module
For writing the composite service API which calls multiple services API, the following Java classes are
needed with respect to new services as mentioned in the below table:

Class Name Description

Composite Service
Interface This provides themethod definitions for the composite services.

Composite Service
Class

This provides the implementation class for the composite services. In this
class, we write methods whichmake the calls to different service APIs. The
response of one service API can be used for making calls in another service
APIs. The final response of the composite service is then created with the
response objects of other service APIs and then transferred back to the adapter
calls.

Executor Interface This provides the extension pre-hook and post-hook method definitions for the
service calls.

Executor Classes This provides the implementation class for the executor interface.

Composite API
ResponseObject This provides the final response object which is passed to the adapter calls.

Table 16–1 Java Classes

322 | Oracle Banking Platform Host Extensibility Guide

16.2 Multiple APIs in Single Module

One of the sample composite servicemethod 'TDAccountPayinApplicationService. openAccountWithPayin'
is shown below. In this servicemethod, there are twomethods of two different services:

n tdAccountApplicationService.openAccount

n tdDepositApplicationService.openDeposit

These servicemethods are called where the new account is created and then the returned account id from
first service is used to do the payin by creating a new deposit for that account.

package com.ofss.fc.app.extensibility.td.service.composite;
import java.util.logging.Level;
import java.util.logging.Logger;
import com.ofss.fc.app.AbstractApplication;
import com.ofss.fc.app.Interaction;
import com.ofss.fc.app.agent.dto.agent.AgentArrangementLinkageDTO;
import com.ofss.fc.app.context.SessionContext;
import
com.ofss.fc.app.extensibility.td.dto.composite.TDAccountPayinRespo
nse;
import
com.ofss.fc.app.extensibility.td.service.composite.ext.IExtendedTe
rmDepositApplicationServiceExtExecutor;
import com.ofss.fc.app.td.dto.account.TermDepositAccountOpenDTO;
import com.ofss.fc.app.td.dto.account.TermDepositAccountResponse;
import com.ofss.fc.app.td.dto.deposit.PayinResponse;
import
com.ofss.fc.app.td.dto.transaction.payin.PayinTransactionDTO;

import
com.ofss.fc.app.td.service.account.ITermDepositAccountApplicationS
ervice;
import
com.ofss.fc.app.td.service.account.TermDepositAccountApplicationSe
rvice;
import
com.ofss.fc.app.td.service.deposit.DepositApplicationService;
import
com.ofss.fc.app.td.service.deposit.IDepositApplicationService;
import com.ofss.fc.common.td.TermDepositTaskConstants;
import com.ofss.fc.enumeration.MaintenanceType;
import com.ofss.fc.infra.exception.FatalException;
import com.ofss.fc.infra.exception.RunTimeException;
import com.ofss.fc.infra.log.impl.MultiEntityLogger;
import com.ofss.fc.service.response.TransactionStatus;
/**
* The TDAccountPayinApplicationService class exposes
functions/services to perform the sample of composite operations.
This extensibility sample services includes: opening account and
deposit
* @author Ofss

16 Composite Application Service | 323

16.2 Multiple APIs in Single Module

*/
public class ExtendedTermDepositApplicationService extends
AbstractApplication implements
IExtendedTermDepositApplicationService {
/**
* Extension point for the class. This is the factory implementation
for the extension of this class.
* Any extension-method call on this factory instance, internally
triggers a call to corresponding
* extension methods of all the extension classes returned by the
ServiceExtensionFactory
*/
private transient IExtendedTermDepositApplicationServiceExtExecutor
extension;
// This attribute holds the component name
private final String THIS_COMPONENT_NAME =
ExtendedTermDepositApplicationService.class.getName();
/**
* This is an instance variable and not a class variable (static or
static final). This is required to
* support multi-entity wide logging.
*/
private transient Logger logger =
MultiEntityLogger.getUniqueInstance().getLogger(THIS_COMPONENT_
NAME);
/ Create instance of multi entity logger
private transient MultiEntityLogger formatter =
MultiEntityLogger.getUniqueInstance();
/**
* @param sessionContext
* @param termDepositAccountOpenDTO
* @return TermDepositAccountResponse
* @throws FatalException
*/
public TDAccountPayinResponse openAccountWithPayin(SessionContext
sessionContext,
TermDepositAccountOpenDTO termDepositAccountOpenDTO,
PayinTransactionDTO payinTransactionDTO,
AgentArrangementLinkageDTO agentArrangementLinkageDTO
) throws FatalException {
super.checkAccess
("com.ofss.fc.app.td.service.composite.TDAccountPayinApplicationSe
rvice.openAccountWithPayin", sessionContext,
termDepositAccountOpenDTO, payinTransactionDTO,
agentArrangementLinkageDTO);
if (logger.isLoggable(Level.FINE)) {

324 | Oracle Banking Platform Host Extensibility Guide

16.2 Multiple APIs in Single Module

logger.log(Level.FINE, formatter.formatMessage("Entered into
openAccountWithPayin(). Input : termDepositAccountOpenDTO %s
",THIS_COMPONENT_NAME, termDepositAccountOpenDTO.toString()));
}
Interaction.begin(sessionContext);
TransactionStatus transactionStatus = fetchTransactionStatus();
TermDepositAccountResponse tdAccountResponse = null;
String newAccountId = null;
PayinResponse payinResponse = null;
TDAccountPayinResponse tdAccountPayinResponse = new
TDAccountPayinResponse();
ITermDepositAccountApplicationService tdAccountApplicationService
= new TermDepositAccountApplicationService();
IDepositApplicationService tdDepositApplicationService= new
DepositApplicationService();
try {
Interaction.markCurrentTask(TermDepositTaskConstants.TD_ACCOUNT_
ATTRIBUTE);
createTransactionContext(sessionContext, MaintenanceType.ADDITION);
extension.preOpenAccountWithPayin(sessionContext,
termDepositAccountOpenDTO,
payinTransactionDTO, agentArrangementLinkageDTO);
termDepositAccountOpenDTO.setBankCode(sessionContext.getBankCode
());
if (logger.isLoggable(Level.FINE)) {
logger.log(Level.FINE, formatter.formatMessage("Entered into
tdAccountApplicationService.openAccount().
Input : termDepositAccountOpenDTO %s ",THIS_COMPONENT_NAME,
termDepositAccountOpenDTO.toString()));
}
tdAccountResponse = tdAccountApplicationService.openAccount
(sessionContext, termDepositAccountOpenDTO);
if (logger.isLoggable(Level.FINE)) {
logger.log(Level.FINE, formatter.formatMessage("Exiting from
tdAccountApplicationService.openAccount().
Input : termDepositAccountOpenDTO %s ", THIS_COMPONENT_NAME,
termDepositAccountOpenDTO.toString()));
}
if(tdAccountResponse!=null && tdAccountResponse.getAccountId
()!=null &&
!Interaction.isTransactionFailure(transactionStatus)) {
newAccountId = tdAccountResponse.getAccountId();
payinTransactionDTO.getAccountTransactionDTO().setAccountId
(newAccountId);
if (logger.isLoggable(Level.FINE)) {
Logger.log(Level.FINE, formatter.formatMessage("Entered into
tdDepositApplicationService.openDeposit().

16 Composite Application Service | 325

16.2 Multiple APIs in Single Module

Input : payinTransactionDTO %s ", THIS_COMPONENT_NAME,
termDepositAccountOpenDTO.toString()));
}
payinResponse = tdDepositApplicationService.openDeposit
(sessionContext, payinTransactionDTO, agentArrangementLinkageDTO);
if (logger.isLoggable(Level.FINE)) {
logger.log(Level.FINE,formatter.formatMessage("Exiting from
tdDepositApplicationService.openDeposit().
Input : payinTransactionDTO %s ",THIS_COMPONENT_NAME,
termDepositAccountOpenDTO.toString()));
}
if (payinResponse != null) {
tdAccountPayinResponse.setAccountId(payinResponse.getAccountId());
tdAccountPayinResponse.setDepositId(payinResponse.getDepositId());
tdAccountPayinResponse.setDepositStatus
(payinResponse.getDepositStatus());
tdAccountPayinResponse.setNetInterestRate
(payinResponse.getNetInterestRate());
tdAccountPayinResponse.setAccountingEventItem
(payinResponse.getAccountingEventItem());
tdAccountPayinResponse.setMaintenanceType
(payinResponse.getMaintenanceType());
tdAccountPayinResponse.setMaturityAmount
(payinResponse.getMaturityAmount());
tdAccountPayinResponse.setProductCode(payinResponse.getProductCode
());
tdAccountPayinResponse.setInterestStartDate
(payinResponse.getInterestStartDate());
tdAccountPayinResponse.setValueDate(payinResponse.getValueDate());
tdAccountPayinResponse.setStatus(payinResponse.getStatus());
}
}
extension.postOpenAccountWithPayin(sessionContext,
termDepositAccountOpenDTO, payinTransactionDTO,
agentArrangementLinkageDTO);
fillTransactionStatus(transactionStatus);
tdAccountPayinResponse.setStatus(transactionStatus);
} catch (FatalException fatalException) {
logger.log(Level.SEVERE, formatter.formatMessage("FatalException
from openAccountWithPayin()"), fatalException);
fillTransactionStatus(transactionStatus, fatalException);
} catch (RunTimeException fcrException) {
logger.log(Level.SEVERE, "RunTimeException from
openAccountWithPayin()", fcrException);
fillTransactionStatus(transactionStatus, fcrException);
} catch (Throwable throwable) {
logger.log(Level.SEVERE, "Throwable from openAccountWithPayin()",
throwable);
fillTransactionStatus(transactionStatus, throwable);

326 | Oracle Banking Platform Host Extensibility Guide

16.2 Multiple APIs in Single Module

} finally {
Interaction.close();
}
super.checkResponse(sessionContext, payinResponse);
if (logger.isLoggable(Level.FINE)) {
logger.log(Level.FINE, formatter.formatMessage("Exiting from
openAccountWithPayin()."));
}
return tdAccountPayinResponse;
}
}

16 Composite Application Service | 327

328 | Oracle Banking Platform Host Extensibility Guide

17 ID Generation

OBP is shipped with the functionality of generation of the IDs in three ways that is, Automatic, Manual and
Custom. These three configurations can be defined by the user as per their requirements:

If the configuration type for the ID generation is set to automatic, the ID is generated as per the defined
generation logic for the automated ID generation. You can set the pattern, sequence, weights and check digit
modulo andmodify the automatic generation logic.

If the configuration type is set to manual then the ID will be input and it will be checked in the database if it is
unique. For the ID, a certain range of serial numbers can be reserved in the range table by the custom
developer and the teller can select it from amongst the ranges while doing themanual entry.

In case the bank's requirement is to have the different ID generation process which can be written or modified,
then the extensibility feature is provided in OBP. In this feature, customized ID generation logic can be written
and can be plugged in the OBP application by creating the custom ID generation class and doing the required
configurations in the database.

The configuration of the ID generation process is shown in the sequence diagram below where the generator
is selected based on the set configuration type.

Figure 17–1 Configuration of ID Generation Process

From the implementation perspective, the following sections describe the change in configurations required
for customizing the ID generation.

17 ID Generation | 329

17.1 Database Setup

17.1 Database Setup
The configuration part of the ID generation requires the following components which need to be defined in the
OBP application. The following tables are involved to store the generation logic details for ID generation:

n FLX_CS_ID_CONFIG_B: This is themain config table where the identifier is defined with the
combination of the category and sub category columns. The type of generation logic is determined
based on the configuration set in the CONFIG_TYPE column of this table.

Column Name Description

CATEGORY_ID Represents the Category Example: Party,Origination, DDA and so on

SUB_CATEGORY_ID Represents the Sub Category Example: PartyId, AccountNo and so on

PATTERN_TXT Represents the pattern in which the ID is generated Example:
SSSSSSSSC, NNNBBBBYYYYSSSSSSS

CONFIG_TYP Represents Generation type values are AUT for Automatic, MAN for
Manual, CUS for Custom

GENERATOR_CLASS_NAME Fully Qualified classname of ID generator for config type Custom

SEQ_VALUE Running Serial Number

WEIGHT Comma separatedWeight for each character defined in the pattern text
Example: '0,0,7,6,5,4,3,2', '3,8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1'

CHK_DIGIT_MODULO Check digit modulo

CREATED_BY Indicates the User who created the row

CREATION_DATE Indicates the date and time of the creation of the row

LAST_UPDATED_BY Indicates the User who last updated the row

LAST_UPDATE_DATE Indicates the date and time of the last update of the row

OBJECT_VERSION_NUMBER Indicates the version number, Used to implement optimistic locking

OBJECT_STATUS_FLAG Status Flag Example: A

Table 17–1 FLX_CS_ID_CONFIG_B

n FLX_CS_ID_RANGE: This table is used to determine the range of the values which the ID can take.

Column Name Description

RANGE_ID Represents the identifier for the range definition

RANGE_NAME Represents the name defined for the range Example: Party, DDA

RANGE_START Defines the beginning value for the range

RANGE_CURRENT Defines the current value for the range

RANGE_END Defines the ending value for the range

CATEGORY_ID Represents the Category defined in FLX_CS_ID_CONFIG_B

SUB_CATEGORY_ID Represents the Sub Category defined in FLX_CS_ID_CONFIG

Table 17–2 FLX_CS_ID_RANGE

330 | Oracle Banking Platform Host Extensibility Guide

17.2 Automated ID Generation

n FLX_CS_ID_USF: This table is used to determine the user selected fields for the ID generation logic.

Column Name Description

USF_ID Represents the identifier for the user selected fields

USF_NAME Represents the name for the user selected fields

IS_FIXED_FLAG Defines if the user selected fields are fixed

CATEGORY_ID Represents the Category defined in FLX_CS_ID_CONFIG_B

SUB_CATEGORY_ID Represents the Sub Category defined in FLX_CS_ID_CONFIG_B

Table 17–3 FLX_CS_ID_USF

17.1.1 Database Configuration
In case of existing ID generation logic in the database, end user can update the seed data scripts by
modifying configuration type and other parameters (pattern, sequence, weight and check digit modulo). While
in case of new type of ID generation logic, an insert sql can be added in the scripts of tables.

17.2 Automated ID Generation
For the configuration type as automatic, user needs to set the CONFIG_TYPE as "AUT" in the FLX_CS_ID_
CONFIG_B table. The ID generation logic is determined based on the set values in the config table for the
pattern, sequence, weight and check digit modulo. The three attributes 'sequence', 'weights' and 'check digit
modulo' are primarily used for calculation of the check digit.

ID Generation with Sequence and Range

ID is picked using the database sequence. This is needed in the case where serial number is used as part of
an ID. Database sequence is used to avoid deadlock while trying to update, a sequential value stored and
retrieved as part of the configuration in-case where the application is multiple threaded. This might lead to
’gaps’ in the sequence of ids generated, if an exception occurs in the Transaction. However, this suffices as
the errors related to deadlocks aremitigated.

For the first call to derive the value, the sequence for the specific configuration pattern is created, with names
as CATEGORYTYPE_SUBCATEGORYTYPE_SEQ. The creation of this sequence happens only once in
the lifecycle of application deployment. For example, TD (category) and AccountId (sub-category), the
sequence generated is TD_ACCOUNTID_SEQ. And, for the successive requests, the already created
sequence is used for sequence generation.

ID Generation with Pattern Text

The pattern text is split and an array is created of the characters. In case of mask ID configuration's pattern,
ID configuration's text patterns are split. If the value is found to contain the special character (out of range [65-
90]), it will be appended as it is to generated ID. Following are the conditions of ID generation with pattern
text:

n If the pattern value is not the special character and the ID value is 'S' that is, SerialNumber, then range
is looked upon:

l If the range is defined, the current position of the range is determined based on category and
sub-category. If the current position value's length is greater than pattern length, then
characters between [0-length of pattern] will be generated ID, else zeros are prefixed before

17 ID Generation | 331

17.2 Automated ID Generation

current position value of range until it's size becomes pattern's length. For example, the pattern
is 'SSSSSS' and the generated range gives the value as '2345' then the actual value will
become '002345'.

l If range is not defined, then next value from sequence category_subCategory_SEQ is picked,
it'll also be corrected to the size of pattern's length as mentioned in case of above example.

n If the pattern value contains 'C', that is, check digit. Check digit computation is done and then
appended the computed value to the pre computed ID value. The input value, weight and check digit
modulo are used for calculation of check-digit. The input value can be sequence ID or can be the ASCII
value in case the inputs are characters. The weights will be comma separated string of the digits to be
used for the calculation.

n If the pattern value contains 'R', related party identifier is used for that value.

n If the pattern value doesn't match any of the above character, the value is fetched from the patternmap
for the pattern's ID and the length is adjusted to the pattern's attribute length. These patternmap
characters need to be passed by the caller service for calculation.

For example, let us take the submissionId with the pattern as NNNYYYYBBBSSSSS in the database.

Figure 17–2 Automated ID Generation - Single Record View

The pattern hashmap 'value' will be populated and passed by the caller with the key value pair as pattern
character as key and its corresponding value. As shown below, 'N' will contain name value, 'Y' will contain
year value and 'B' will contain branch code.

332 | Oracle Banking Platform Host Extensibility Guide

17.2 Automated ID Generation

Figure 17–3 Automated ID Generation - Generate Submission ID

Figure 17–4 Automated ID Generation - Submission ID Generation Service

17 ID Generation | 333

17.3 Custom ID Generation

The ID will be generated by the automatic generator with first three characters as name, next four digits as
year, next three characters of branch and rest with generated sequence as per themask pattern.

In case of without mask configuration's pattern. If range ID is -1, it means that there is no range defined for the
mask configuration, it then picks up the range details with range ID based on the category and sub-category.
The generated ID will become the current position of range. If range is not defined in the table, then the
sequence needs to be defined and the value is picked based on that. The next value of the sequence will
become the generated ID value.

17.3 Custom ID Generation
In case of configuration type as custom, user needs to set the CONFIG_TYPE as ’CUS’ in the CONFIG_
TYP column in the FLX_CS_ID_CONFIG_B table.

User can customize the ID generator by writing a new custom ID generator class which will need to extend
the IdGenerator and write the abstract methods for the ID generation. This class needs to bementioned in the
GENERATOR_CLASS_NAME column of FLX_CS_ID_CONFIG_B table.

Figure 17–5 Custom ID Generation - Custom ID Generator

334 | Oracle Banking Platform Host Extensibility Guide

17.3 Custom ID Generation

In case the user want to write the custom generation logic in a specific customized pattern definition, then
user can do that by writing the custom constant class and the custom pattern class which can pick the
defined pattern from the configuration object set in the PATTERN_TXT column of the FLX_CS_ID_CONFIG_
B table of the database. The user will pass the values in the pattern hashmapwhich will then populate the
pattern and generate the ID.

Figure 17–6 Custom ID Generation - Custom ID Generation Constants

17 ID Generation | 335

17.3 Custom ID Generation

Figure 17–7 Custom ID Generation - Custom Pattern Based Generator

336 | Oracle Banking Platform Host Extensibility Guide

18 Extensibility of Domain Objects using Flex
Fields

This chapter describes about the Flex Field provisioning by the product at the service layer. Flexfields are
additional attributes provisioned to the consultant upfront or through configuration, with basic validation. By
the use of flex field, consultant or client can add additional data elements as part of the entity, without adding
custom codes.

18.1 Flex Field - Provisioning details
n Maximum 30 attributes per entity is provisioned at each entity level. Attributes data type declared as

String, for flexibility. This has been added as part of AbstractDomainObject (will be available for all
OBP entities). For Over and above fields, consultant is expected to go via customized entity extension
approach.

l ORM level: Provisioned as FlexField embedded attribute. As performance effectiveness, if
flexfield is not used for specific entity, this can be removed by replacing the ORM.

Note

Dynamic way of enabling this only for the entities required is in the
future scope of product.

Figure 18–1 Example - ORM Level

l DB level: The above columns will be part of table, with datatype as varchar.

18 Extensibility of Domain Objects using Flex Fields | 337

18.2 Flex Field - Fact support

n Service input / data transfer is supported through Dictionary Object (Separate indicator is provided to
distinguish flex field dictionary object). The attributes which is passed as part of the Dictionary object
with the indicator flex field, will be persisted as flex field in the respective element. The attribute name
follow the name convention as “Attribute<<attribute number>>” [‘A’ caps, like Attribute1, Attribute2,
Attribute3, …. and Attribute30].

Figure 18–2 Example of Service Input / Data Transfer through Dictionary Object

18.2 Flex Field - Fact support
Flex fields provisioned can be consumed as facts as below,

n Object entity based facts can directly use, since available as part of AbstractDomainObject.

n Derived facts can be created, using custom code / value data sources (HQL) based on the embedded
object (#FlexField).

Figure 18–3 Example

18.3 Flex Field – Validation Support
Basic validation is supported for flex fields using configuration. Flex field has metadata where at each
attribute level for the entity, supported validation can be configured. Below are the details on themetadata
configuration for supported validations. This needs be seeded, requires restart to reflect.

Note

Configuration screen is in future scope of product.

338 | Oracle Banking Platform Host Extensibility Guide

18.3 Flex Field – Validation Support

Table 18–1 Metadata Table - flx_fw_ff_metadata

Column Descrip-
tion Example

ENTITY_
NAME

Name of
the entity
where flex
field is
applic-
able. Full
qualified
name.

com.ofss.fc.-
domain.lcm.entity.collaterals.realestate.ResidentialProperty

ATTRIBUT-
E_NAME

Name of
the attrib-
ute of the
flex field.
Attribute1
/ Attrib-
ute2 / so
on...

Attribute1

LABEL

Label or
descrip-
tion of the
attribute.
When val-
idation
error mes-
sage is
thrown,
this is
used to
throw
exception.
If not main-
tained,
then the
attribute
name will
be used
for the val-

Description of land

18 Extensibility of Domain Objects using Flex Fields | 339

18.3 Flex Field – Validation Support

Column Descrip-
tion Example

idation
message.

ATTRIBUT-
E_DATA_
TYPE

Attribute
data type.
Enu-
meration
(String /
BigDecim-
al / Enum
/ Date ..).
Used
when
validating
the field
based on
the data-
type.

STRING

IS_
MANDATO-
RY

Validator
field: Indic-
ates
whether
attribute
value is
man-
datory.
Check for
not null /
empty val-
ues.

Y

MIN_
LENGTH

Validator
field: Indic-
ates the
minimum
length
required
for the

5

340 | Oracle Banking Platform Host Extensibility Guide

18.3 Flex Field – Validation Support

Column Descrip-
tion Example

attribute.
Validates,
if main-
tained
some
value.

MAX_
LENGTH

Validator
field: Indic-
ates the
maximum
length
required
for the
attribute.
Validates,
if main-
tained
some
value.

250

PATTER-
N_REGEX

Validator
field: Indic-
ates the
regular
expres-
sion sup-
ported by
the attrib-
ute. Val-
idates, if
main-
tained
some
value.

^[a-zA-Z0-9]*$

ENUM_
TYPE_
NAME

Validator
field: Indic- <<Applicable only for Enum type, e.g., com.ofss.fc.e-

numeration.lcm.collaterals.CollateralType>>

18 Extensibility of Domain Objects using Flex Fields | 341

18.3 Flex Field – Validation Support

Column Descrip-
tion Example

ates the
enu-
meration
type sup-
ported by
the attrib-
ute. Fully
qualified
name.
Checks
with the
enu-
meration
value
sent. Val-
idates, if
main-
tained
some
value and
data type
is Enum.

MAX_
DATE_
VALIDATO-
R_TYPE

Validator
field: Indic-
ates the
maximum
date val-
idator
type.
(Posting
date / Sys-
tem date /
Value
date). Val-
idates
whether

<<Applicable only for Date type, e.g., POSTING_DATE>>

342 | Oracle Banking Platform Host Extensibility Guide

18.4 Flex Field – Usage Instructions

Column Descrip-
tion Example

the date is
not more
than the
men-
tioned
date val-
idator
type. Date
validator
type sup-
ported are
Posting
date, Sys-
tem date
and Value
date. Val-
idates, if
main-
tained
some
value and
data type
is date.

18.4 Flex Field – Usage Instructions
Perform the following steps for usage:

n Identify the entity for which flex field support is required. Verify with the product team whether flex field
provisioning is already available. If not, you can add similar to Section 18.1 Flex Field - Provisioning
details. [Post dynamic provisioning, this will be enabled via configuration].

n Pass / Retrieve the attributes via Dictionary object, as per Section 18.1 Flex Field - Provisioning
details.

n If validation required for any of the attributes in the flex field, configure / seed themetadata as per
Section 18.3 Flex Field – Validation Support [Post dynamic provisioning & configuration screen, this
will be enabled via configuration screen].

n If fact required, follow Section 18.2 Flex Field - Fact support for details.

18 Extensibility of Domain Objects using Flex Fields | 343

344 | Oracle Banking Platform Host Extensibility Guide

19 Extensibility of Domain Objects -
Dictionary Pattern

This chapter describes how consultants or other third parties can extendOBP domain by leveraging the
dictionary design pattern to extend any Abstract Domain Object on which amaintenance screen and
corresponding services are supported by product and are shipped for a release. This pattern provides true
domainmodel extension capabilities by allowing addition of custom data fields to the underlying domain
objects and the database tables mapped to them. In this approach, the datamodel for the custom fields is
extended from that of the domain objects itself and hence can be consumed in business policies or even rules
as facts. The dictionary pattern enables using the custom data fields in the extensions, business rules (as
facts) and custom business policies as the domain object load from the database retrieves the extended
domain object and not just the product domain object.

The framework related changes tomake such support available are supported from release 2.3 of the Oracle
Banking Platform. These changes have beenmade across layers including the UI, JSON, Assembler, ORM
andDB layer. The changes required to bemade by consulting to support the persistence and usage of the
extra attributes by extending the product domain object have been discussed in detail in the sections by
taking common domain extensibility use cases as examples. The process in which data is transferred from
the UI layer, to the host layer is mentioned briefly as points below:

n The proxy layer provides an extension point wherein the additional data fields on the screen can be
populated as name value pairs and set in the input request.

n The custom attribute data gets passed through the JSON layer onto themiddleware host as part of the
application service invocation.

n These name value pairs are translated into the custom domain object which extends the baseOBP
domain object.

n The custom fields get persisted into the DB along with the domain object fields as part of ORM
mapping.

n Exact opposite flow follows for inquiry services in which the data flows back via output response.

19 Extensibility of Domain Objects - Dictionary Pattern | 345

19.1 Customized Domain Object Attribute Placeholders

Figure 19–1 Extensibility of Domain Objects - Framework

The dictionary data is passed in the request DTO and is therefore available as part of the pre and post
application service extensions. The above process is described in detail in the sections below.

19.1 Customized Domain Object Attribute Placeholders
Data transfer object (DTO) is a design pattern used to transfer data between an external system and the
application service. All the informationmay be wrapped in a single DTO containing all the details and passed
as input request as well as returned as an output response. The client can then invoke accessor (or getter)
methods on the DTO to get the individual attribute values from the Transfer Object. All request response
classes in OBP application services aremodelled as data transfer objects. These objects extend a base
class DataTransferObject which holds an array of Dictionary object. The Dictionary encapsulates an array of
NameValuePairDTOwhich is used to pass data of custom data fields or attributes from the UI layer to the
host middleware. The following is mentioned as points below:

n All DTO classes should extend DomainObjectDTO class.

n The DomainObjectDTO class has beenmade to extend DataTransferObject class.

n This class has a single attribute which is an array of Dictionary class.

n Dictionary class has a single attribute which is an array of NameValuePairDTO

Using an array of name value pairs inside an array of dictionary allows for supporting two dimensional grid
structures in the UI layer.

At present whenever any third party requires support for additional attributes in a Domain Object, the
information regarding the corresponding Customized Domain Object name and attribute name-value pair is
required to be populated as an array of NameValuePairDTOwhich in turn is set in the Dictionary class as the
first and only element of the ’dictionaryArray’ attribute of the DataTransferObject. This is shown in the
following code extract.

346 | Oracle Banking Platform Host Extensibility Guide

19.2 Customized Domain Object DTO Interceptor in UI Layer

Figure 19–2 Code Extract

19.2 Customized Domain Object DTO Interceptor in UI Layer
All DTO classes should extend DomainObjectDTO in casemaintenance fields are required.

For example, ’MessageDataAttributeDTO’ Class which extends ’DomainObjectDTO’ is used to transfer data
between an external system and the application service and persist data for Domain Object
’MessageDataAttribute’.

’CustomizedMessageDataAttribute’ is a subclass of this Customizable Maintenance Domain Object called
’MessageDataAttribute’ which is extended by the partners or consulting teams to include and subsequently
persist extra attributes along with those of ’MessageDataAttribute’.

This information can bemapped as input and output to the application services with the help of
dictionaryArray attribute of MessageDataAttributeDTO inherited from DataTransferObject.

19.2.1 Interceptor Hook to Persist Customized Domain Object Attributes
This UI Layer Interceptor Hook is used during Create or Updatemode to populate DataTransferObject with
the dictionaryArray attributes from customized Screen Components to be persisted as the Customized
Domain Object.

In the UI Layer, the ApplicationServiceProxyFacade is used to send the DataTransferObject on to the Host to
be persisted. Before it does so, it uses the InterceptorFactory to instantiate the appropriate
IProxyLayerInterceptor defined in the DictionaryInterceptor.properties corresponding to the key for this
application service or task code. Thereafter it invokes the ’populateDictionaryArray’ method of this
IProxyLayerInterceptor to populate DataTransferObject with the dictionaryArray attributes from customized
Screen Components. Thereafter, it sends the entire DataTransferObject on to the Host for persistence as the
Customized Domain Object.

The following figure provides the details of Interceptor Hook to populate and persist Customized Domain
Object.

19 Extensibility of Domain Objects - Dictionary Pattern | 347

19.2 Customized Domain Object DTO Interceptor in UI Layer

Figure 19–3 Interceptor Hook to Persist Customized Domain Object

19.2.2 Interceptor Hook to Fetch Customized Domain Object Attributes
This UI Layer Interceptor Hook is used during readmode to extract the dictionaryArray attributes from the
DataTransferObject and populate the customized Screen Components with the help of the screen view
object.

In the UI Layer, the ApplicationServiceProxyFacade is used to receive the DataTransferObject from the Host.
After it does so, it uses the InterceptorFactory to instantiate the appropriate IProxyLayerInterceptor defined in
the DictionaryInterceptor.properties corresponding to the key for this application service or task code.
Thereafter, it invokes the ’extractDictionaryArray’ method of this IProxyLayerInterceptor to extract the
dictionaryArray attributes from the DataTransferObject and populate the customized Screen Components
with the help of the screen view object. Thereafter, it returns the entire DataTransferObject on to the Screen
Backing Bean or Helper Class from where the proxy fetch call was invoked.

The following figure provides the details of Interceptor Hook to fetch Customized Domain Object and populate
extra Screen Components.

348 | Oracle Banking Platform Host Extensibility Guide

19.3 Dictionary Data Transfer from UI to Host

Figure 19–4 Interceptor Hook to Fetch Customized Domain Object

InterceptorFactory instantiates the appropriate IProxyLayerInterceptor defined in the
DictionaryInterceptor.properties corresponding to the key.

Examples of such key value pair is:-

com.ofss.fc.appx.ep.service.dispatch.message.service.client.proxy.MessageTemplateApplicationServiceP
roxyFacade=com.ofss.fc.ui.taskflows.ep.messageTemplateUI.view.interceptor.MessageTemplateUIInterc
eptor

com.ofss.fc.appx.party.service.contact.service.client.proxy.ContactPointApplicationServiceProxyFacade=
com.ofss.fc.ui.view.party.contactPoint.interceptor.ContactPointUIInterceptor

19.3 Dictionary Data Transfer from UI to Host
The section describes the dictionary data transfer from UI to Host.

19.3.1 Customized Domain Object DTO Transfer from UI to Host
In UI server <ApplicationService>JSONClient constructs the JSON Object for <DomainObjectDTO> which
includes the dictionaryArray of the DataTransferObject.

For example, in UI server MessageTemplateApplicationServiceJSONClient constructs the JSON Object for
MessageTemplateDTOwhich includes MessageTemplateAttributeDTO and the dictionaryArray of
DataTransferObject as shown below.

19 Extensibility of Domain Objects - Dictionary Pattern | 349

19.3 Dictionary Data Transfer from UI to Host

Figure 19–5 JSONClient constructs the JSON Object

<ApplicationService>JSONClient constructs the JSON Object for <DomainObjectDTO> which
includes the dictionaryArray of the DataTransferObject

The above process uses AbstractJSONBindingStub class' serializeDictionaryArray to include ’genericName’
and ’value’ attributes of NameValuePairDTOArray which was inside dictionaryArray attribute of
MessageTemplateAttributeDTO.

350 | Oracle Banking Platform Host Extensibility Guide

19.3 Dictionary Data Transfer from UI to Host

Figure 19–6 SerializeDictionaryArray to include GenericName and Value attributes

AbstractJSONBindingStub class's serializeDictionaryArray to include "genericName" and "value"
attributes of NameValuePairDTOArray

In the Host Server <ApplicationService>JSONFacade extracts the ’DictionaryArray’ attribute of JSON
Object and sets it as <DomainObjectDTO>'s dictionaryArray attribute.

For example, in the Host Server, MessageTemplateApplicationServiceJSONFacade extracts the
’DictionaryArray’ attribute of JSON Object and sets it as MessageDataAttributeDTO's dictionaryArray
attribute.

19 Extensibility of Domain Objects - Dictionary Pattern | 351

19.3 Dictionary Data Transfer from UI to Host

Figure 19–7 Host Server JSONFacade extracts the attribute of JSON Object

In the Host Server <ApplicationService>JSONFacade extracts the "DictionaryArray" attribute of
JSON Object and sets it as <DomainObjectDTO>'s dictionaryArray attribute.

The above process uses AbstractJSONFacade's getDictionaryArray method that unmarshalls the
’genericName’ and ’value’ from JSON Object to get the dictionaryArray attribute.

352 | Oracle Banking Platform Host Extensibility Guide

19.3 Dictionary Data Transfer from UI to Host

Figure 19–8 AbstractJSONFacade's getDictionaryArray method

AbstractJSONFacade's getDictionaryArray method that unmarshalls the "genericName" and "value"
from JSON Object to get the dictionaryArray attribute

19.3.2 Customized Domain Object DTO transfer from Host to UI
In the Host Server <ApplicationService>JSONFacade constructs the JSON Object for <DomainObjectDTO>
and the dictionaryArray of DataTransferObject

MessageTemplateApplicationServiceJSONFacade's method serializeMessageDataAttributeDTOArray in
Host Server constructs the JSON Object for MessageTemplateDTOwhich includes
MessageTemplateAttributeDTO and the dictionaryArray of DataTransferObject as shown below:

19 Extensibility of Domain Objects - Dictionary Pattern | 353

19.3 Dictionary Data Transfer from UI to Host

Figure 19–9 Host Server JSONFacade constructs the JSON Object

In the Host Server <ApplicationService>JSONFacade constructs the JSON Object for
<DomainObjectDTO> and the dictionaryArray of DataTransferObject

The above process uses AbstractJSONFacade's serializeDictionaryArray to include ’genericName’ and
’value’ attributes of NameValuePairDTOArray which was inside dictionaryArray attribute of
MessageTemplateAttributeDTO.

354 | Oracle Banking Platform Host Extensibility Guide

19.3 Dictionary Data Transfer from UI to Host

Figure 19–10 AbstractJSONFacade's serializeDictionaryArray to include Generic Name and Value attributes

AbstractJSONFacade's serializeDictionaryArray to include "genericName" and "value" attributes of
NameValuePairDTOArray

In the UI Server, <ApplicationService>JSONClient extracts the ’DictionaryArray’ attribute of JSON Object
and sets it as <DomainObjectDTO>DTO's dictionaryArray attribute.

In the UI Server, MessageTemplateApplicationServiceJSONClient extracts the ’DictionaryArray’ attribute of
JSON Object and sets it as MessageDataAttributeDTO's dictionaryArray attribute.

19 Extensibility of Domain Objects - Dictionary Pattern | 355

19.3 Dictionary Data Transfer from UI to Host

Figure 19–11 UI Server JSONClient extracts the DictionaryArray attribute

In the UI Server, <ApplicationService>JSONClient extracts the "DictionaryArray" attribute of JSON
Object and sets it as <DomainObjectDTO>DTO's dictionaryArray attribute

The above process uses AbstractJSONBindingStub's getDictionaryArray method that unmarshalls the
’genericName’ and ’value’ from JSON Object to get the dictionaryArray attribute.

356 | Oracle Banking Platform Host Extensibility Guide

19.4 Translating Dictionary Data into Custom Domain Object

Figure 19–12 AbstractJSONBindingStub's getDictionaryArray method

AbstractJSONBindingStub's getDictionaryArray method that unmarshalls the "genericName" and
"value" from JSON Object

The provision of marshalling and un-marshalling of ’dictionaryArray’ attribute of all DataTransferObjects has
been included in the JSON layer for all application services.

19.4 Translating Dictionary Data into Custom Domain Object
This section describes the details of translating dictionary data into custom domain object.

19.4.1 Instantiation and Persistence of Custom Domain Objects
If a method has an input parameter that is a DataTransferObject, the first line of themethod in the assembler
will be of the form:

(populateDataTransferObjectDTOMap(’Fully Qualified Name of this DataTransferObject>’,
dataTransferObject);

This method is defined in AbstractAssembler.java which newly instantiates
referenceDataTransferObjectDTOMap if required and populates themapwith the above entry.

This map is used as a set of globally available DataTransferObject's which can be retrieved by invoking
another method defined in AbstractAssembler.java which is of the form:

retrieveDataTransferObjectDTOMapElement(’<Fully Qualified Name of
this DataTransferObject >’);

Whenever any AbstractDomainObject is instantiated, the Customized AbstractDomainObject should be
instantiated instead of the original AbstractDomainObject wherever applicable.

19 Extensibility of Domain Objects - Dictionary Pattern | 357

19.4 Translating Dictionary Data into Custom Domain Object

The AbstractDomainObject is instantiated with the help of the below code fragment:

IAbstractDomainObject domainObject=null;
try {
if (retrieveDataTransferObjectDTOMapElement("
<Fully Qualified Name of DataTransferObject from Naming Convention
Rules >").getDictionaryArray() == null) {
domainObject = <Current Process Of Instantiation>;
} else {
domainObject=(IAbstractDomainObject)
getCustomizedDomainObject (retrieveDataTransferObjectDTOMapElement
(
"<Fully Qualified Name of DataTransferObject from Naming Convention
Rules >"));

/********* In AbstractAssembler.java, we have defined the method
public IAbstractDomainObject getCustomizedDomainObject
(DataTransferObject dataTransferObjectDTO)

This method instantiates the Customized AbstractDomainObject based
on the value of the attribute "dictionaryArray" of the
DataTransferObject passed as the only parameter. The method also
populates this customized domain object with the extra attribute
values also from the "dictionaryArray" attribute and finally
returns this instance of the Customized Domain Object.
*********/
}
} catch (Exception e) {
domainObject = <Current Process Of Instantiation>;
}

19.4.2 Fetching of Customized Domain Objects
If a method has an input parameter that is an IAbstractDomainObject, the first line of themethod in the
assembler will be of the form:

populateAbstractDomainObjectMap("<Fully_Qualified_Name_
IAbstractDomainObject>", abstractDomainObject);

This method is defined in AbstractAssembler.java which newly instantiates
referenceAbstractDomainObjectMap if required and populates themapwith the above entry.

This map is used as a set of globally available IAbstractDomainObject's which can be retrieved by invoking
another method defined in AbstractAssembler.java which is of the form:

retrieveDataTransferObjectDTOMapElement("<Fully_Qualified_Name_
IAbstractDomainObject>");

Whenever any DataTransferObject is instantiated, we populate its ’dictionaryArray’ attribute immediately
after it's instantiation.

In AbstractAssembler.java, we have defined themethod à

public Dictionary[] getDictionaryArray(IAbstractDomainObject obj)

358 | Oracle Banking Platform Host Extensibility Guide

19.4 Translating Dictionary Data into Custom Domain Object

This method creates and returns a dictionary array from the IAbstractDomainObject passed to it as input
parameter.

Example of final piece of code:

Figure 19–13 Instantiation of DataTransferObjects

19.4.3 Defining of Customized Domain Objects
Whenwe are viewing the customized attributes on the screen, we need to fetch the Customized Abstract
Domain Object data into the Domain Object DTO. This is why the customized attributes in the Customized
Domain Object have to be populated in the dictionary array of the Domain Object DTO.

This is done in the AbstractAssembler which returns the dictionary array of the Domain Object DTO based on
the Abstract Domain Object passed to it, through amethod called "getDictionaryArray". To achieve this, the
AbstractAssembler firstly needs to understand which is a customized domain object.

In preferences.xml we have defined the following:

<Preference name="CustomizedAbstractDomainObjectConfig"
PreferencesProvider="com.ofss.fc.infra.config.impl.DBBasedProperty
Provider"
parent="jdbcpreference"
propertyFileName="select prop_id, prop_value from flx_fw_config_
all_b where category_id = 'CustomizedAbstractDomainObjectConfig'"
syncTimeInterval="600000" />

Wehave to insert a record in table flx_fw_config_all_b to identify a Customized Domain Object in the
followingmanner.

19 Extensibility of Domain Objects - Dictionary Pattern | 359

19.5 Customized Domain Object ORM Configuration

INSERT INTO FLX_FW_CONFIG_ALL_B (PROP_ID, CATEGORY_ID, PROP_VALUE,
FACTORY_SHIPPED_FLAG, PROP_COMMENTS, SUMMARY_TEXT, CREATED_BY,
CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS_
FLAG, OBJECT_VERSION_NUMBER)
VALUES ('com.ofss.fc.domain.ep.entity.action.ActivityEventAction',
'CustomizedAbstractDomainObjectConfig',
'com.ofss.fc.domain.ep.entity.action.CustomizedActivityEventActio
n', 'y', '',
'Customized object of
com.ofss.fc.domain.ep.entity.action.ActivityEventAction',
'ofssuser',
'09-SEP-14 05.53.56.000000 PM', 'ofssuser', '09-SEP-14
05.53.56.000000 PM', 'A', 1);

The AbstractAssembler identifies a customized domain object by deciphering the above information.

So every Customized Domain Object has to be defined in flx_fw_config_all_b with category_id =
'CustomizedAbstractDomainObjectConfig'.

Only if such a definition exists, the abstract domain object passed is identified to be a customized domain
object and the corresponding Domain Object DTO is provided with its dictionary array.

However, if the abstract domain object passed is not identified to be a customized domain object, the
corresponding Domain Object DTO is provided with a dictionary array which has null value.

19.5 Customized Domain Object ORM Configuration
This section describes the details of customized domain object ORM configuration.

19.5.1 Case 1 - Non-Inheritance based mapping
Non-inheritance basedmapping refers to those domain objects that are not mapped as a Subclass or Union-
Subclass or Joined-Subclass. Let us take the example of the class MessageDataAttribute. The fully qualified
class name is ’com.ofss.fc.domain.ep.entity.dispatch.message.MessageDataAttribute’. This class has been
mapped in ep.messagetemplate.orm.xml.

Adding Discriminator columnmapping in existing ORM file

Add the discriminator as:- <discriminator column=" DOMAIN_OBJECT_EXTN" type="string"/>

For the purpose of identifying the extended domain object in the corresponding table, add a 'discriminator
column' in the corresponding table and update the ORM file. The name of the discriminator column used is
DOMAIN_OBJECT_EXTN and the default discriminator value defined is 'CZ'

So any normal Create or Update operation will have a value 'CZ' for DOMAIN_OBJECT_EXTN column.

360 | Oracle Banking Platform Host Extensibility Guide

19.5 Customized Domain Object ORM Configuration

Figure 19–14 Adding Discriminator ColumnMapping in Existing ORM file

A new ORM file mapping to Customized Domain Object is added

The following figure explains adding a new ORM file mapping to Customized Domain Object.

Figure 19–15 ORM File Mapping to Customized Domain Object

For example a new file CustomizedMessageDataAttribute.orm.xml is introduced to include the extra
attributes added by consulting or any other third party along with the discriminator value. This file will map to
the new customized domain object and will be extending the existing Abstract Domain Object.

Adding new Java File corresponding to the Customized Domain Object

The following figure explains adding new Java file corresponding to the Customized Domain Object.

19 Extensibility of Domain Objects - Dictionary Pattern | 361

19.5 Customized Domain Object ORM Configuration

Figure 19–16 Adding New Java File to the Customized Domain Object

A Java File is added corresponding to the existing Abstract Domain Object. This will be extending the
Abstract Domain Object that we are extending.

Adding extra columns along with the discriminator column to the domain object table

The following figure explains adding a new Java file corresponding to the Customized Domain Object.

Figure 19–17 Adding Extra Columns along with the Discriminator Column

362 | Oracle Banking Platform Host Extensibility Guide

19.5 Customized Domain Object ORM Configuration

The extra columns along with the discriminator column have to be added to the domain object table of this
domain object.

In case of Creation or Updation of ’CustomizedMessageDataAttribute’ instead of ’MessageDataAttribute’ the
new discriminator column ’DOMAIN_OBJECT_EXTN’ has the value of ’FCMA’ instead of ’CZ’ and an
additional value in columns ’CUSTOM_VALUE1’ and ’CUSTOM_VALUE2’ in table FLX_EP_MSG_ATTR_B.

In case of Creation or Updation of ’MessageDataAttribute’ the new discriminator column ’DOMAIN_
OBJECT_EXTN’ has the value of ’CZ’ and NULL values in columns ’CUSTOM_VALUE1’ and ’CUSTOM_
VALUE2’ in table FLX_EP_MSG_ATTR_B.

19.5.2 Case 2 - Mapped as ORM Subclass
Themaintenance domain objects which aremapped as a Subclass already have an existing discriminator.
For the purpose of identifying the extended domain object in the same table, we shall be using the existing
discriminator.

Let us take the example of ’com.ofss.fc.domain.party.entity.contact.Cellular’. This is mapped as a subclass
in ContactPoint.orm.xml.

A new ORM file mapping to Customized Domain Object is added

The following figure explains adding a new ORM file mapping to Customized Domain Object.

Figure 19–18 Adding a New ORM File Mapping to Customized Domain Object

A new file FirstCustomizedCellular.orm.xml is introduced to include the extra attributes added by consulting
or any other third party along with the discriminator value ’FCLR’. This file will map to the new customized
domain object ’com.ofss.fc.domain.party.entity.contact.FirstCustomizedCellular’ and will be extending the
existing Abstract Domain Object which is ’com.ofss.fc.domain.party.entity.contact.Cellular’.

Adding new Java File corresponding to the Customized Domain Object

The following figure explains adding a new Java File corresponding to the Customized Domain Object.

19 Extensibility of Domain Objects - Dictionary Pattern | 363

19.5 Customized Domain Object ORM Configuration

Figure 19–19 Adding New Java File to Customized Domain Object

A Java File ’com.ofss.fc.domain.party.entity.contact.FirstCustomizedCellular’ is added corresponding to the
existing Abstract Domain Object. This will be extending the Abstract Domain Object that we are extending.

Adding Extra Columns to the Domain Object Table

The extra columns have to be added to the domain object table of this domain object.

In this caseGRAPHICS_MODE column is added to FLX_PI_CONTACT_POINT table.

So in case of Creation or Updation of ’FirstCustomizedCellular’ instead of ’Cellular’ the existing discriminator
column ’CONTACT_POINT_TYPE’ has the value of ’FCLR’ instead of ’CLR’ and an additional value in
column ’GRAPHICS_MODE’ in table FLX_PI_CONTACT_POINT.

And in case of Creation or Updation of ’Cellular’ the existing discriminator column ’CONTACT_POINT_
TYPE’ has the value of ’CLR’ and NULL values in column ’GRAPHICS_MODE’ in table FLX_PI_
CONTACT_POINT.

19.5.3 Case 3 - Mapped as ORM Union-Subclass or Joined-Subclass
Let us take the example of ’com.ofss.fc.domain.lcm.entity.limits.facility.proposedFacility.ProposedFacility’.
This class has beenmapped in Facility.orm.xml as a union subclass.

Use the customized entity
’com.ofss.fc.cz.nab.domain.lcm.entity.limits.facility.proposedFacility.CustomizedProposedFacility’ for the
purpose of extensibility of this domain object.

Adding Discriminator in ORM file where base class has beenmapped is not required

The existing Facility.orm.xml file which contains themapping for
"com.ofss.fc.domain.lcm.entity.limits.facility.proposedFacility.ProposedFacility" is not required to be altered.

A new ORM file mapping to Customized Domain Object is added

The following figure explains adding a new ORM file mapped to new Customized Domain Object.

364 | Oracle Banking Platform Host Extensibility Guide

19.5 Customized Domain Object ORM Configuration

Figure 19–20 New ORM File Mapping

For example, a new file CustomizedProposedFacility.orm.xml is introduced to include the extra attributes
added by consulting or any other third party. This file will map to the new customized domain object and will
be extending the existing Abstract Domain Object.

Adding new Java File corresponding to the Customized Domain Object

Figure 19–21 Adding New Java File

19 Extensibility of Domain Objects - Dictionary Pattern | 365

19.5 Customized Domain Object ORM Configuration

A Java File ’CustomizedProposedFacility.java’ is added. This extends the Abstract Domain Object that we
are extending.

Create a new table CZ_NAB_LM_PROPOSED_FACILITY similar to the Domain Object Table

We are extending that is,FLX_LM_PROPOSED_FACILITY_B and add the extra columns to the new table.

Figure 19–22 Create a New Table CZ_NAB_LM_PROPOSED_FACILITY

Adding Customized JPQLQueries whenever the Domain Object is Referred

The following file has the attribute ’CustomizedORMQueriesConfig’ to fire the Customized JPQL if required:
Preferences.xml.

The attribute is as follows:

<Preference name="CustomizedORMQueriesConfig"

PreferencesProvider="com.ofss.fc.infra.config.impl.JavaConstantsCo
nfigProvider"
overriddenBy="CustomizedORMQueriesConfigOverride"
parent="jdbcpreference"
propertyFileName="com.ofss.fc.common.CustomizedORMQueriesConfig"
syncTimeInterval="600000" />

The following files have also been changed to fire the Customized JPQL if required.

com.ofss.fc.framework.domain@/com/ofss/fc/framework/repository/AbstractRepository.java

com.ofss.fc.common.jar@/src/com/ofss/fc/common/CustomizedORMQueriesConfig.java

The following file has the attribute ’CustomizedORMQueriesConfigOverride’ to fire the Customized JPQL if
required.

<lzn>/au/config/Preferences.xml

<Preference name="CustomizedORMQueriesConfigOverride"

PreferencesProvider="com.ofss.fc.infra.config.impl.JavaConstantsCo
nfigProvider"
parent=""
propertyFileName="com.ofss.fc.lz.au.common.CustomizedORMQueriesCon
fig"
syncTimeInterval="600000"/>

366 | Oracle Banking Platform Host Extensibility Guide

19.6 Extensibility using Dictionary in Origination Application

Therefore, com.ofss.fc.lz.au.common.CustomizedORMQueriesConfig.java file needs to have the old JPQL
query namemapped to the customized query name for this domain object.

Similarly, extensibility of domain objects mapped as joined-subclass can also be done.

19.5.4 Case 4 - Mapped as ORM Component
This relates to only those component classes that implements IAbstractDomainObject and should be
extensible.

The Java Class corresponding to this component class has to be extended and this new Java Class along
with the additional attributes have to bemapped in the ORM file.

The corresponding additional columns have to be added in the domain object table in question.

19.6 Extensibility using Dictionary in Origination Application
In this section, the Application Form page (Fast path: OR097) of the Oracle Banking Platform is taken as an
example.

19.6.1 ICustomDataHandler's as DictionaryArray Interceptor
The backing beanmethod of OR097 - Application Form
’com.ofss.fc.ui.taskflows.origination.application.applicationForm.view.backing.ApplicationForm.moveNext
()’ calls implementation of
com.ofss.fc.ui.taskflows.origination.application.common.handler.ICustomDataHandler.

Implementation of com.ofss.fc.ui.taskflows.origination.application.common.handler.ICustomDataHandler
can be configured in OriginationConfiguration.properties. Property name is customDataHandler

ApplicationFormHelper.getSubmissionInputDTO() will give themaster DTO for the application form.

19 Extensibility of Domain Objects - Dictionary Pattern | 367

19.6 Extensibility using Dictionary in Origination Application

Figure 19–23 CustomDataHandler's as DictionaryArray Interceptor

This hook should be used to populate the dictionary array of the concerned DTO at the correct stage of
application form entry.

19.6.2 Create Customized Abstract Domain Object Class
A new Java File is added corresponding to the existing Abstract Domain Object. This extends the Abstract
Domain Object that we are extending.

368 | Oracle Banking Platform Host Extensibility Guide

19.6 Extensibility using Dictionary in Origination Application

Figure 19–24 Create Customized Abstract Domain Object Class

19.6.3 Create Customized Abstract Domain Object ORM Mapping File
A new file .orm.xml is introduced to include the extra attributes added by consulting or any other third party
along with the discriminator value. This file maps to the new customized domain object and extends the
existing Abstract Domain Object.

Figure 19–25 Create Customized Abstract Domain Object ORM Mapping File

19.6.4 Create Customized Abstract Domain Object Attribute Columns
The extra columns have to be added to the domain object table of this domain object.

Figure 19–26 Create Customized Abstract Domain Object Attribute Columns

19 Extensibility of Domain Objects - Dictionary Pattern | 369

19.7 Extensibility using Attributes of Various Supported Datatypes

In case of Creation or Updation of ’CustomizedApplicant’ instead of ’Applicant’ the existing discriminator
column ’DOMAIN_OBJECT_EXTN’ has the value of ’CUST’ instead of ’CZ’ and an additional value in
column ’CRIMINAL_RECORD’ in table FLX_OR_APPLICANTS.

In case of Creation or Updation of ’Applicant’ the existing discriminator column ’DOMAIN_OBJECT_EXTN’
has the value of ’CZ’ and NULL values in column ’CRIMINAL_RECORD’ in table FLX_OR_APPLICANTS.

Similarly, other DomainObjectDTO's can have their dictionary arrays populated in the ICustomDataHandler
class being used and the corresponding customized domain object will get persisted instead of the usual
domain object.

19.7 Extensibility using Attributes of Various Supported
Datatypes
Extensibility of maintenance domain objects now supports extended attributes with all data types that have a
public constructor with a single argument of data-type "String".

This includes attributes of data-type "com.ofss.fc.datatype.Date" whose "toString()" method should be
invoked to set its value in NameValuePairDTO array element of Dictionary array. The value set is of the
format given in root.properties file.

Additionally extensibility of maintenance domain objects is now also supporting extended attributes with
enumeration data types defined in "com.ofss.fc.enumeration" project.

Here is an example of extensibility of "com.ofss.fc.domain.ep.entity.dispatch.message.MessageTemplate"
using attributes of different supported datatypes.

The following customized class is created that contains the additional attributes.

370 | Oracle Banking Platform Host Extensibility Guide

19.7 Extensibility using Attributes of Various Supported Datatypes

Figure 19–27 Customized Message Template Class

The following extra columns have been added in the domain object table "flx_ep_msg_tmpl_b".

19 Extensibility of Domain Objects - Dictionary Pattern | 371

19.7 Extensibility using Attributes of Various Supported Datatypes

Figure 19–28 Domain Object Table

The following ORM file maps the customized class attributes with the table columns.

Figure 19–29 ORM File

The following JUnit test case has been used to test a "create" operation.

372 | Oracle Banking Platform Host Extensibility Guide

19.7 Extensibility using Attributes of Various Supported Datatypes

Figure 19–30 JUnit Test Case

The above JUnit runs to add the following record in the table.

Figure 19–31 JUnit Adds Table Record

Similarly, a JUnit is run to do "fetch" operation. This fetches the customized record whose dictionary array
values have been shown below.

19 Extensibility of Domain Objects - Dictionary Pattern | 373

19.7 Extensibility using Attributes of Various Supported Datatypes

Figure 19–32 Dictionary Array Values

374 | Oracle Banking Platform Host Extensibility Guide

19.8 Customized Domain Object having Collection of Objects as Attributes

19.8 Customized Domain Object having Collection of Objects
as Attributes

Figure 19–33 Customized Domain Object having collection of Objects as Attributes

19 Extensibility of Domain Objects - Dictionary Pattern | 375

19.8 Customized Domain Object having Collection of Objects as Attributes

Figure 19–34 Member Attributes of Customized Domain Object

Figure 19–35 Dictionary Array Elements

To construct a CustomizedMessageTemplate having 2 elements in messageAttributeList and 1 element in
messageRecipientList, set the dictionaryArray of MessageTemplateDTO as follows:

The dictionaryArray has four elements as highlighted in the above figure.

n The 0th dictionaryArray element will have NameValuePairDTO array of non-collection attributes. This
element's fullyQualifiedClassNamewill be the fully qualified class name of the customized domain
object that is being constructed.

376 | Oracle Banking Platform Host Extensibility Guide

19.8 Customized Domain Object having Collection of Objects as Attributes

n The 1st dictionaryArray element will have NameValuePairDTO array of 1st element of 1st collection
attribute. This element's fullyQualifiedClassNamewill be the fully qualified class name of the
customized domain object that is being constructed, appended with "." and 1st collection attribute
name.

n The 2nd dictionaryArray element will have NameValuePairDTO array of 2nd element of 1st collection
attribute. This element's fullyQualifiedClassNamewill be the fully qualified class name of the
customized domain object that is being constructed, appended with "." and 1st collection attribute
name.

n The 3rd dictionaryArray element will have NameValuePairDTO array of 1st element of 2nd collection
attribute. This element's fullyQualifiedClassNamewill be the fully qualified class name of the
customized domain object that is being constructed, appended with "." and 2nd collection attribute
name.

Figure 19–36 Customized Domain Object constructed by AbstractAssembler

19 Extensibility of Domain Objects - Dictionary Pattern | 377

19.9 Limitation to Extensibility using Dictionary Pattern

Figure 19–37 Dictionary Array returned by AbstractAssembler

19.9 Limitation to Extensibility using Dictionary Pattern
Extensibility of domain objects using Dictionary pattern is not applicable to thoseMaintenance Domain
Objects that implement com.ofss.fc.framework.domain.search.ISearchableEntity.

The following is the list of the ISearchableEntity:

n com.ofss.fc.domain.config.entity.OBPConfigurationProperty

n com.ofss.fc.domain.origination.entity.core.submission.Submission

n com.ofss.fc.domain.party.entity.textsearch.PartyAggregateSummary

n com.ofss.fc.domain.account.entity.statement.impl.TDFinancialStatementItem

n com.ofss.fc.domain.account.entity.statement.impl.LoanFinancialStatementItem

n com.ofss.fc.domain.account.entity.statement.impl.DDFinancialStatementItem

n com.ofss.fc.domain.account.entity.statement.impl.DDNonFinancialStatementItem

n com.ofss.fc.domain.account.entity.statement.impl.LoanNonFinancialStatementItem

n com.ofss.fc.domain.account.entity.transactingparty.TransactingParty

n com.ofss.fc.domain.lcm.entity.collaterals.businessassets.AllPAPExcept

n com.ofss.fc.domain.lcm.entity.collaterals.businessassets.BusinessAssets

n com.ofss.fc.domain.lcm.entity.collaterals.businessassets.AllPAP

n com.ofss.fc.domain.lcm.entity.collaterals.fixedasset.computerhardware.ComputerHardware

n com.ofss.fc.domain.lcm.entity.collaterals.fixedasset.Machinery

378 | Oracle Banking Platform Host Extensibility Guide

19.9 Limitation to Extensibility using Dictionary Pattern

n com.ofss.fc.domain.lcm.entity.collaterals.fixedasset.computersoftware.ComputerSoftware

n com.ofss.fc.domain.lcm.entity.collaterals.fixedasset.FixedAsset

n com.ofss.fc.domain.lcm.entity.collaterals.fixedasset.Furniture

n com.ofss.fc.domain.lcm.entity.collaterals.industrybusinessvalue.IndustryBusinessValue

n com.ofss.fc.domain.lcm.entity.collaterals.agriculture.Agriculture

n com.ofss.fc.domain.lcm.entity.collaterals.agriculture.crop.Crops

n com.ofss.fc.domain.lcm.entity.collaterals.agriculture.livestock.LiveStocks

n com.ofss.fc.domain.lcm.entity.collaterals.agreementandundertaking.NonFinancialAgreementAndUnd
ertaking

n com.ofss.fc.domain.lcm.entity.collaterals.agreementandundertaking.AgreementAndUndertaking

n com.ofss.fc.domain.lcm.entity.collaterals.currentassets.inventorystock.InventoryStocks

n com.ofss.fc.domain.lcm.entity.collaterals.currentassets.CurrentAssets

n com.ofss.fc.domain.lcm.entity.collaterals.currentassets.bookdebt.BookDebts

n com.ofss.fc.domain.lcm.entity.collaterals.currentassets.receivable.Receivable

n com.ofss.fc.domain.lcm.entity.collaterals.automobile.PassengerVehicle

n com.ofss.fc.domain.lcm.entity.collaterals.automobile.Automobile

n com.ofss.fc.domain.lcm.entity.collaterals.automobile.GoodsVehicle

n com.ofss.fc.domain.lcm.entity.collaterals.investmentsecurities.InvestmentSecurities

n com.ofss.fc.domain.lcm.entity.collaterals.investmentsecurities.SharesStock

n com.ofss.fc.domain.lcm.entity.collaterals.investmentsecurities.InvestmentSecurity

n com.ofss.fc.domain.lcm.entity.collaterals.intangibleasset.IntangibleAsset

n com.ofss.fc.domain.lcm.entity.collaterals.other.OtherCollateral

n com.ofss.fc.domain.lcm.entity.collaterals.insurance.lifeinsurance.LifeInsurance

n com.ofss.fc.domain.lcm.entity.collaterals.insurance.Insurance

n com.ofss.fc.domain.lcm.entity.collaterals.bullion.Bullion

n com.ofss.fc.domain.lcm.entity.collaterals.cash.TermDeposit

n com.ofss.fc.domain.lcm.entity.collaterals.cash.CashDeposit

n com.ofss.fc.domain.lcm.entity.collaterals.Collateral

n com.ofss.fc.domain.lcm.entity.collaterals.proposedcollateral.ProposedCollateralRequest

n com.ofss.fc.domain.lcm.entity.collaterals.proposedcollateral.IPARequest

n com.ofss.fc.domain.lcm.entity.collaterals.proposedcollateral.SubDivisionRequest

n com.ofss.fc.domain.lcm.entity.collaterals.proposedcollateral.ConsolidationRequest

n com.ofss.fc.domain.lcm.entity.collaterals.guarantee.PersonalGuarantee

n com.ofss.fc.domain.lcm.entity.collaterals.guarantee.Guarantee

n com.ofss.fc.domain.lcm.entity.collaterals.guarantee.FamilyGuarantee

19 Extensibility of Domain Objects - Dictionary Pattern | 379

19.9 Limitation to Extensibility using Dictionary Pattern

n com.ofss.fc.domain.lcm.entity.collaterals.guarantee.BankGuarantee

n com.ofss.fc.domain.lcm.entity.collaterals.guarantee.GuaranteeAndIndemnity

n com.ofss.fc.domain.lcm.entity.collaterals.guarantee.GovernmentGuarantee

n com.ofss.fc.domain.lcm.entity.collaterals.realestate.IndustrialProperty

n com.ofss.fc.domain.lcm.entity.collaterals.realestate.WaterProperty

n com.ofss.fc.domain.lcm.entity.collaterals.realestate.CommercialProperty

n com.ofss.fc.domain.lcm.entity.collaterals.realestate.RealEstate

n com.ofss.fc.domain.lcm.entity.collaterals.realestate.ResidentialProperty

n com.ofss.fc.domain.lcm.entity.collaterals.realestate.RuralProperty

n com.ofss.fc.domain.lcm.entity.collaterals.artwork.ArtWork

n com.ofss.fc.domain.lcm.entity.collaterals.aircraft.smallaircraft.SmallAirCraft

n com.ofss.fc.domain.lcm.entity.collaterals.aircraft.cargoaircraft.CargoAirCraft

n com.ofss.fc.domain.lcm.entity.collaterals.aircraft.airframe.AirFrame

n com.ofss.fc.domain.lcm.entity.collaterals.aircraft.passengeraircraft.PassengerAirCraft

n com.ofss.fc.domain.lcm.entity.collaterals.aircraft.helicopter.HeliCopter

n com.ofss.fc.domain.lcm.entity.collaterals.aircraft.aircraftengine.AirCraftEngine

n com.ofss.fc.domain.lcm.entity.collaterals.aircraft.otheraircraft.OtherAirCraft

n com.ofss.fc.domain.lcm.entity.collaterals.aircraft.AirCraft

n com.ofss.fc.domain.lcm.entity.collaterals.ship.Ship

n com.ofss.fc.domain.lcm.entity.collaterals.license.WaterLicense

n com.ofss.fc.domain.lcm.entity.collaterals.license.License

n com.ofss.fc.domain.lcm.entity.collaterals.license.liquorlicense.LiquorLicense

n com.ofss.fc.domain.lcm.entity.collaterals.license.fishinglicense.FishingLicense

n com.ofss.fc.domain.lcm.entity.collaterals.license.managementrights.ManagementRights

n com.ofss.fc.domain.lcm.entity.collaterals.license.taxilicense.TaxiLicense

n com.ofss.fc.domain.pc.entity.institution.FinancialInstitution

n com.ofss.fc.framework.audit.AuditItem

380 | Oracle Banking Platform Host Extensibility Guide

20 Deployment Guideline

This chapter explains the deployment guidelines.

20.1 Customized Project Jars
The customized extension projects are to be bundled in the different extensibility jars which are required to be
added in the extensibility.

20.2 Database Objects
User has to update the corresponding seed data for the implementation of different extensibility features.

20.3 Extensibility Deployment
The new customized extensibility jars will be added in the extensibility libraries as ext.obp.host.domain for the
host middleware layer, ext.obp.ui.domain for UI or presentation layer and ext.obp.soa.domain for the SOA
layer. These extensibility application libraries will be packaged and shipped as the separate library folders
along with the original library folders so that the extensibility feature can be added.

TheOBP deployed applications shall reference these libraries so that customization jars included into these
get automatically referenced in the corresponding EAR andWAR files.

20 Deployment Guideline | 381

20.3 Extensibility Deployment

Figure 20–1 Extensibility Deployment

382 | Oracle Banking Platform Host Extensibility Guide

21 OCH Integration

This chapter describes how additional information can be added to anOracle Customer Hub (henceforth
mentioned as OCH) publish request. Publishing additional information can be required base on the client
requirements, and henceOBP Integration adapters and assemblers need to be extended for such additional
informations. Integration adapters are used for gathering data related to a customer, which is further used by
assemblers to mapOBP DTO to AIA Enterprise Business Objects (henceforth mentioned as EBOs).

OBP OCH integration involves the following steps:

1. Fetching all the data related to customer depending on the use case

2. Conversion of OBP DTO to AIA EBOs

3. Posting the EBO to AIA queue using Asynch JMS protocol

Integration adapters are invoked from the post hook of application service extensions. After the successful
execution of the use case, adapters further call Integration assemblers for conversion of DTO to EBO.

After conversion, adapters post the serialized EBO request to AIA queue using Integration strategy, which is
fetched on the basis of use case.

A few examples of Integration strategies are as follows:

n AsyncFireForgetIntegrationStrategyJMS: It is used in use cases where a response is not expected
from OCH. Integration use cases involving creation/updation of customer information use this
strategy.

n SyncIntegrationStrategy: It is used where a response is required from OCH. Uses cases, like Party
Search or Party Deduplication where customer information is fetched from OCH, use this strategy.

A few examples of Integration adapters are:

n UpdatepartyAdapter: It is used for populating customer information.

n ChangeAccountTitleAdapter: It is used in use cases where customer's account information is to be
published to OCH.

A few examples of Integration assemblers are:

n UpdatePartyAssembler: It is invoked from UpdatepartyAdapter andmaps customer information to
EBO attributes.

n CreateAccountAssember: It is invoked from ChangeAccountTitleAdapter andmaps customer's
account information to respective EBO attribute.

21.1 Integration Adapter Interface
OBP framework contains an interface, IIntegrationAdapter which provides two basic methods for OCH
integration.

These twomethods must be implemented by any adapter implementing the interface and use them for
publishing data to OCH. Signature of these twomethods are:

21 OCH Integration | 383

21.2 Abstract Integration Adapter Class

void update(SessionContext context, DomainObjectDTO dto,
BaseResponse response) throws FatalException;
Object updateWithResponse(SessionContext context, DomainObjectDTO
dto, BaseResponse response) throws FatalException;

Update() method is used in the use cases where response it not expected from OCH.

UpdateWithResponse() method is used when the data is required from OCH.

Figure 21–1 Integration Adapter Interface

21.2 Abstract Integration Adapter Class
OBP framework has an abstract class AbstractIntegrationAdapter which provides methods for common data,
such as audit information or session context etc. This abstract class implements IIntegrationAdapter
interface.

All adapters must extend AbstractIntegrationAdapter and implement the twomethods defined in the
IIntegrationAdapter interface.

384 | Oracle Banking Platform Host Extensibility Guide

21.3 Sample Integration Adapter

Figure 21–2 Abstract Integration Adapter Class

21.3 Sample Integration Adapter
The following figure is a sample adapter for customer information:

21 OCH Integration | 385

21.4 Integration Abstract Assembler

Figure 21–3 Sample Integration Adapter

21.4 Integration Abstract Assembler
OBP framework has as abstract class AbstractAssembler which provides design for DTO to EBO
conversion. Thesemethods are used while mapping DTO to EBO and vice versa.

Signature of methods are:

public abstract T toCanonicalModel(D dto) throws FatalException;
public abstract D fromCanonicalModel(T domainObject) throws
FatalException;

toCanonicalModel() is used when DTO is to be converted to EBO and fromCanonicalModel() in the other
case.

386 | Oracle Banking Platform Host Extensibility Guide

21.5 Sample Assembler

Figure 21–4 Integration Abstract Assembler

All the assemblers must implement these twomethods for conversion of DTO to EBO and vice versa.

Assemblers also populate the header of the request which is posted to the queue.

21.5 Sample Assembler
A sample assembler which extends AbstractAssembler should be like:

21 OCH Integration | 387

21.5 Sample Assembler

Figure 21–5 Sample Assembler

User can extend assemblers to addmore DTO to EBOmapping.

Note

EBOs are generated from AIA wsdl, and can be extended to add extra
fields in the custom tag using the standard AIA extension framework.
For each newly added field, customization developer must set that field
in the assembler.

388 | Oracle Banking Platform Host Extensibility Guide

22 Algorithm Extensions

This chapter explains the Algorithm Extensions for Oracle Banking Platform (OBP) Collections

22.1 Overview
Where the system requires a customization, OBP Collections provide for customizable algorithms.
Algorithms provide a powerful and flexible way of extending applications. Base algorithms exist, but can be
cloned andmodified. Unlike Change Handlers, they aremore related to the business functions and events.
Also, unlike Change Handlers, they use configurable ("soft") parameters. At upgrades, custom algorithms will
not be overwritten.

Algorithms are defined in 2 places:

n Database tables: The online Adminmenu is used to define the following database components:

l Algorithm Types

l Algorithms

l The event or activity to which the algorithm applies (For example, Characteristics, Date
validations, and so on.)

n Framework: The framework requires the implementation class, that is the program that contains the
logic, and various generated artifacts.

22.2 Algorithm Spots
The call out places in the system (For example, Date validation for ad hoc characteristics) are known as
algorithm spots. Each algorithm spot has an interface class. Communication with an algorithm takes place
through the interface. An interface provides abstraction between the base and the customization.

Figure 22–1 Algorithm Spot Interface

Attributes of an algorithm spot interface class:

n The API to the algorithm component (from the base application).

n It is specific to the algorithm entity type (or system event).

n It defines the hard input parameters for an algorithm. These are the parameters associated with a
specific event.

n It defines the output parameters that can be retrieved after the algorithm has been invoked.

22 Algorithm Extensions | 389

22.2 Algorithm Spots

n It also specifies the schema defined for a plug-in script.

n It is invoked from the base code at appropriate times (events).

n Themethods on the interface are related to the algorithm type. For example, setAdhocValue (String
value) is only relevant to AdhocCharacteristicValueValidationAlgorithmSpot.

Figure 22–2 Example: Algorithm Spot Interface

Adding Algorithm Spots:

n Algorithm Spots reference an AlgorithmEntityLookup (ALG_ENTITY_FLG) value, so a new lookup
valuemust be added to correspond to the new spot.

n Add an interface that defines the spot using the@AlgorithmSpot annotation.

n Properties include:

l algorithmEntity: One or more AlgorithmEntity values corresponding to the lookup value
described above.

l calledFromCobol: A boolean attribute that lets the framework know if inbound call support is to
be supported from COBOL.

l implementableInCobol: A boolean attribute that lets the framework know if it must be able to call
an algorithm implemented in COBOL.

n Extend the AlgorithmSpot interface.

n Wire up the call to the spot by accessing the AlgorithmComponent via
Algorithm.getAlgorithmComponent(…)

Example: See AdhocCharacteristicValueValidationAlgorithmSpot

390 | Oracle Banking Platform Host Extensibility Guide

22.3 Algorithm Components

Figure 22–3 Example: Adding New Algorithm Spot

22.3 Algorithm Components
An algorithm requires a programmatic implementation. The Algorithm Type definition carries the program
name, for examplecom.splwg.ccb.domain.collection.caseType. CharAdhocDateValidation. This name in fact
specifies another interface which is generated from the implementation class. The implementation class
name = the interface name + Impl, for example
com.splwg.ccb.domain.collection.caseType.CharAdhocDateValidation_Impl.

The following diagram describes the Date Validation algorithm component. Remember:

n An interface is empty. It requires an implementation to perform appropriate tasks.

n The implementation for an algorithm spot is an Algorithm Component, that is Business Component.

22 Algorithm Extensions | 391

22.3 Algorithm Components

Figure 22–4 Example: Data Validation Algorithm Component

Algorithm Components Example - CharAdhocDateValidation

The following diagram presents an example of the CharAdhocDateValidation algorithm component.

392 | Oracle Banking Platform Host Extensibility Guide

22.3 Algorithm Components

Figure 22–5 Example: CharAdhocDateValidation

The annotations marked in the above diagram are explained as follows:

n The implementation class (CharAdhocDateValidation_Impl) is hand-coded - it can be customized.

n The component interface is generated by the artifact generator - a customized version will be generated
for a custom impl class. The _Gen class (CharAdhocDateValidation_Gen) has themethods for the soft
parameters (as specified on the Algorithm Type definition). Note: These are generated from the
annotations in the "_Impl" class.

n An algorithm is invoked via its component interface (CharAdhocDateValidation).

Algorithm Implementation Class:

The base versions of all algorithms are provided. To create a new one, it is easiest to duplicate the appropriate
base one if it exists andmodify it.

The basic Java elements of a new algorithm are:

n An "_Impl" class, the hand-coded implementation class that contains the logic

n A "_Gen" class, the implementation class for the "soft" parameters, generated by the artifact generator

n A component interface class, generated by the AG

n A messagemethod, if required

22 Algorithm Extensions | 393

22.3 Algorithm Components

Figure 22–6 New Algorithm Implementation

Adhoc Characteristic Date Validation Example:

The following diagram presents an example of Adhoc Characteristic Date Validation.

Figure 22–7 Adhoc Characteristic Date Validation

The annotations marked in the above diagram are explained as follows:

394 | Oracle Banking Platform Host Extensibility Guide

22.3 Algorithm Components

1. The soft parameters expected by the algorithm - these correspond with the Algorithm Type parameter
definitions

2. Has an Algorithm Component name (as specified on the Algorithm Type) + "_Impl"

3. Extends the "_Gen" class - the "_Gen" class is generated by the Artifact Generator

4. Implements the base Algorithm Spot class for the algorithm type

Algorithm Spot interface methods that are implemented in _Impl class:

The following diagrams present the Algorithm Spot interfacemethods that are implemented in _Impl class.

Figure 22–8 Algorithm Spot Interface Methods

22 Algorithm Extensions | 395

22.3 Algorithm Components

Figure 22–9 Algorithm Spot Interface Methods (continued)

The annotations marked in the above diagrams are explained as follows:

1. This method is invoked by the business component to set the hard parameters. This sets the char
value to validate. It is stored here for use later.

2. This returns a true/false to indicate the validity of the date characteristics.

3. This returns the reformatted value.

4. This method set the required format.

5. The invoke () method is called to validate and format the date.

Generated artifacts that are based on the _Impl class annotation:

n The _Gen class has themethods for the soft parameters

n The _Impl class calls thesemethods to get the soft parameter values, as set on the Algorithm
definition

396 | Oracle Banking Platform Host Extensibility Guide

22.3 Algorithm Components

Figure 22–10 Generated Artifacts

n The component interface defines the requiredmethods for the _Impl class as viewed from the
application (the business component).

22 Algorithm Extensions | 397

22.3 Algorithm Components

Figure 22–11 Generated Artifacts

The steps to create a new algorithm Impl class are:

1. Determine the Algorithm Spot interface name. The Javadocs can be used for this.

2. Create the "_Impl" class, implementing the appropriate Algorithm Spot interface.

3. Add default implementations for all the Algorithm Spot methods (For example, using the Eclipse
Source, Override/implement Methods…menu item).

4. Code the annotation.

5. Run the Artifact Generator to create the "_Gen" and component interface classes.

In Eclipse, you must refresh the project after this.

The steps to create a new algorithm (Admin UI) are:

398 | Oracle Banking Platform Host Extensibility Guide

22.3 Algorithm Components

1. Create the Algorithm Type and attached with algorithm component.

Figure 22–12 Create Algorithm Type

2. Attach the algorithm to the Algorithm Type and test.

22 Algorithm Extensions | 399

22.4 List of Algorithm Spots

Figure 22–13 Attach Algorithm

22.4 List of Algorithm Spots
The detailed list of algorithm spots which can be used for extending and customizing the product are listed in
the following table.

400 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

AdhocCh
aracterist
icValueV
alidation
Algorithm
Spot

T
h
i
s
a
l
g
o
ri
t
h
m

s
p
o
t
i
s
i

void
setFor
matO
nly
(boole
an
format
Only);
void
setCh
aracte
risticT
ype
(Char
acteri
sticTy
pe
type);
void
setAd
hocVa
lue
(String
value);
String
getRe
format
tedVal
ue();

com.splwg.ccb.domain.collect
ion.caseType.CharAdhocDate
Validation

com.splwg.ccb.domain.collecti
on.caseType.CharAdhocDate
Validation_Impl

C
ha
ra
ct
eri
sti
c
D
at
e
fie
ld
V
ali
da
tio
n:
C
1-
C
H
A
R
D
T
V
A
L

This
algorith
m is
used to
validate
that an
ad hoc
characte
ristic
value is
a date or
a
date/tim
e. The
Paramet
ers From

Table 22–1 List of Algorithm Spots

22 Algorithm Extensions | 401

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

n
v
o
k
e
d
o
n
c
h
a
r
a
c
t
e
ri
s
ti
c
a
d
h

boolea
n
isVali
dAdho
c();

Date
and To
Date are
both
optional.
The
algorith
m will
check
that the
date is
later
than the
From
Date (if
entered)
and/or
earlier
than the

402 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

)
v
a
li
d
a
t
e
t
h
a
t
t
h
e
v
a
l
u
e
i
s
c
o
r
r

if the
characte
ristic
value is
a
date/tim
e field.
The
various
Date
Format
paramet
ers are
used to
control
the
format in
which
the
date/tim
e is
entered

22 Algorithm Extensions | 403

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e

of the
format
entered
by the
user, the
date is
stored in
the
format
defined
by
paramet
er 3. We
strongly
recomm
end this
paramet
er be set
to
YYYY-
MM-DD
for dates
and
YYYY-
MM-DD-
HH:MI:
SS for
date/tim

404 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CureEntit
yAlgorith
mSpot

T
h
i
s
a
l
g
o
ri
t
h
m

s
p
o
t
i
s
u
s
e
d
t
o
c
u
r

void
setAc
countI
d
(Acco
unt_Id
acctI
d);

com.splwg.ccb.domain.collect
ion.batch.algorithm.CureEntity
Algorithm

com.splwg.ccb.domain.collecti
on.batch.algorithm.CureEntity
Algorithm_Impl

C
ur
e
A
cc
ou
n
t:
C
1-
FI
N
C
O
LL

This
algorith
m
performs
following
activitie
s: -
Invoke
OBP
service
to set
the
incollect
ion flag
in host
as "N". -
Mark
incollect
ion flag
as "N" in
collectio
ns. - Set
end date
in CI_
PART
Y_

22 Algorithm Extensions | 405

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
t
h
e
a
c
c
o
u
n
t
.

COLLE
CT as
posting
date. -
Update
number
of times
account
is self
cured
(used for
statistic
s). -
Remove
strategy
review
date.
Paramet
er:
contact
Methods
: This
soft
paramet
er
accept
the
comma
separate

406 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

SaTypeS
aStopAlg
orithmSp
ot

T
h
i
s
a
l
g
o
ri
t
h
m

s
p
o
t
i
s
u
s
e
d
t
o
s
t
o

void
setSer
viceA
greem
ent
(Servi
ceAgr
eeme
nt
servic
eAgre
emen
t);

com.splwg.ccb.domain.collect
ion.batch.algorithm.FinalizeCo
llectionContractStopAlgoCom
p

com.splwg.ccb.domain.collecti
on.batch.algorithm.FinalizeColl
ectionContractStopAlgoCom
p_Impl

St
op
C
on
tr
ac
t:
C
1-
C
U
R
E
N
TI
T
Y

This
algorith
m will
stop the
contract
for the
account
which is
to be
cured.

22 Algorithm Extensions | 407

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

p
t
h
e
c
o
n
t
a
r
c
t
.

Allocatio
nGroupQ
ueueAlgo
rithmSpot

T
h
i
s
a
l
g
o
ri
t
h
m

s
p

void
setAll
ocatio
nGrou
p
(String
allocat
ionGro
up);
void
setBu
siness
Date
(Date

Com.splwg.ccb.domain.collec
tion.batch.algorithm.Allocation
GroupQueueAlgoComp

com.splwg.ccb.domain.collecti
on.batch.algorithm.AllocationG
roupQueueAlgoComp_Impl

Q
ue
ue
Al
lo
ca
tio
n:
C
1-
A
LL
O
C
Q
U

This
Algorith
m type
is used
to
allocate
the
entities
such as
cases to
queues.
ci_
allocatio
n_
monitor_
vw view

408 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
t
i
s
u
s
e
d
t
o
a
ll
o
c
a
t
e
t
h
e
e
n
ti
ti
e
s
.

busine
ssDat
e);
void
seTo
Queue
Bean
(Alloc
ationG
roupC
asesT
oQueu
eBean
caseA
llocTo
Queu
e);
Alloca
tionGr
oupCa
sesTo
Queue
Bean
getCa
seTo
Queue
Bean
();
Alloca
tionGr

E
U

is
shipped
from
product
to filter
cases.

22 Algorithm Extensions | 409

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t
h
m

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String

com.splwg.ccb.domain.collect
ion.batch.algorithm.Customer
LevelSwitchUpdateAlgorithm

com.splwg.ccb.domain.collecti
on.batch.algorithm.CustomerL
evelSwitchUpdateAlgorithm_
Impl

U
pd
at
e
C
us
to
m
er
S
wi
tc
h:
C
1-
C
U
S
T
S
W

Update
custome
r level
case
status
on case
enter
processi
ng.
Custom
er Level
Switch
Name:
Please
enter the
custome
r level
case
status
switch
which
needs to
update.
eg.
BANKR
UPT_
SW,

410 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e
b
u
s
i
n
e
s
s
l
o

getNe
xtTran
sCond
ition()

HARDS
HIP_
SW,
IMPRIS
ONED_
SW,
DECEA
SED_
SW,
ABSCO
NDING_
SW etc
Switch
Value:
Please
enter the
switch
value as
Y or N

22 Algorithm Extensions | 411

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

p
e
c
if
i
c
s
t
a
t
u
s
.

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS

com.splwg.ccb.domain.collect
ion.batch.algorithm.RepoAndL
egalCaseUpdateAlgorithm

com.splwg.ccb.domain.collecti
on.batch.algorithm.RepoAndLe
galCaseUpdateAlgorithm_Impl

U
pd
at
e
Le
ga
l/
R
ep
o
S
wi
tc
h:
C
1-

Algorith
m Type
to
update
Legal
and
Repo
case
status
on enter
process
Legal
Repo
Switch
Name:

412 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t
h
m

s
p

tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String
getNe
xtTran
sCond
ition()

L
E
R
E
P
O
C
T

Please
enter the
Legal or
Repo
case
switch
column
name of
account
extensio
n eg.
LEGAL_
CASE_
EXIST
S_SW
or
REPO_
CASE_
EXIST
S_SW
etc
Switch
Value:
Please
enter the
switch
value as
Y or N

22 Algorithm Extensions | 413

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

t
o
e
x
e
c
u
t
e
t
h
e
b
u
s
i
n
e
s
s
l
o

414 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

s
t
a
t
u
s
.
T
h
e
s
p
e
c
if
i
c
s
a
m
p
l
e
a
l
g

22 Algorithm Extensions | 415

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

UserAllo
cationAlg
orithmSp
ot

T
h
i
s
s
p
o
t
b
e
i
n
g
u
s
e
d
f
o
r
a
ll
o
c
a
ti
o

void
setUs
erToQ
ueueB
ean
(User
Alloca
tionTo
Queue
Bean
userAl
locTo
Queu
e);
UserA
llocati
onTo
Queue
Bean
getUs
erToQ
ueueB
ean();
UserA
llocati
onTo
Queue
Bean

com.splwg.ccb.domain.collect
ion.batch.algorithm.UserAlloc
ationRoundRobinAlgorithm

com.splwg.ccb.domain.collecti
on.batch.algorithm.UserAllocat
ionRoundRobinAlgorithm_Impl

U
se
r
Al
lo
ca
tio
n -
R
ou
nd
R
ob
in:
C
1-
U
S
R
A
L
C
R
R

User
Allocatio
n Round
Robin
algorith
m type
allocate
s cases
to users
on the
basis of
capacity
set
during
configur
ation on
queue
admin.
OverFlo
w cases
will get
assigne
d to
Excepti
on User.

416 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

n
o
f
u
s
e
r
u
s
i
n
g
v
a
ri
o
u
s
a
l
g
o
ri
t
h
m
s
.

getUs
erAllo
cation
Map();

22 Algorithm Extensions | 417

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

UserAllo
cationAlg
orithmSp
ot

T
h
i
s
s
p
o
t
b
e
i
n
g
u
s
e
d
f
o
r
a
ll
o
c
a
ti
o
n

void
setUs
erToQ
ueueB
ean
(User
Alloca
tionTo
Queue
Bean
userAl
locTo
Queu
e);
UserA
llocati
onTo
Queue
Bean
getUs
erToQ
ueueB
ean();
UserA
llocati
onTo
Queue
Bean
getUs
erAllo

com.splwg.ccb.domain.collect
ion.batch.algorithm.UserAlloc
ationPercentageBaseAlgorith
m

com.splwg.ccb.domain.collecti
on.batch.algorithm.UserAllocat
ionPercentageBaseAlgorithm_
Impl

U
se
r
Al
lo
ca
tio
n -
%
B
as
e
d:
C
1-
U
S
R
A
L
C
P
R

User
Allocatio
n
Percent
age
based
algorith
m type
allocate
s cases
to users
on the
basis of
percenta
ge
allocatio
ns set
during
configur
ation on
queue
admin.
OverFlo
w cases
will get
assigne
d to
Excepti
on User.

418 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
f
u
s
e
r
u
s
i
n
g
v
a
ri
o
u
s
a
l
g
o
ri
t
h
m
s
.

cation
Map();

22 Algorithm Extensions | 419

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

VendorAll
ocationAl
gorithmS
pot

T
h
i
s
s
p
o
t
b
e
i
n
g
u
s
e
d
f
o
r
a
ll
o
c
a
ti
o
n

void
setVe
ndorT
oQueu
eBean
(Vend
orAllo
cation
ToQu
eueBe
an
vendo
rAlloc
ToQu
eue);
Vendo
rAlloc
ationT
oQueu
eBean
getVe
ndorT
oQueu
eBean
();
Vendo
rAlloc
ationT
oQueu
eBean

com.splwg.ccb.domain.collect
ion.batch.algorithm.VendorAllo
cationRoundRobinAlgorithm

com.splwg.ccb.domain.collecti
on.batch.algorithm.VendorAllo
cationRoundRobinAlgorithm_
Impl

V
en
do
r
Al
lo
ca
tio
n -
R
ou
nd
R
ob
in:
C
1-
V
E
N
A
L
C
R
R

This
algorith
m will
allocate
cases to
vendors
in round
robin
fashion.
This
algorith
m is
invoked
from the
User
Allocatio
n batch
(C1-
USAL
C).
OverFlo
w cases
will get
assigne
d to
Excepti
on User
of the
queue.

420 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
f
v
e
n
d
o
r
u
s
i
n
g
v
a
ri
o
u
s
a
l
g
o
ri
t
h
m
s
.

getVe
ndorAl
locatio
nMap
();

22 Algorithm Extensions | 421

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

VendorAll
ocationAl
gorithmS
pot

T
h
i
s
s
p
o
t
b
e
i
n
g
u
s
e
d
f
o
r
a
ll
o
c
a
ti
o
n

void
setVe
ndorT
oQueu
eBean
(Vend
orAllo
cation
ToQu
eueBe
an
vendo
rAlloc
ToQu
eue);
Vendo
rAlloc
ationT
oQueu
eBean
getVe
ndorT
oQueu
eBean
();
Vendo
rAlloc
ationT
oQueu
eBean

com.splwg.ccb.domain.collect
ion.batch.algorithm.VendorAllo
cationPercentageBaseAlgorith
m

com.splwg.ccb.domain.collecti
on.batch.algorithm.VendorAllo
cationPercentageBaseAlgorith
m_Impl

V
en
do
r
Al
lo
ca
tio
n -
%
B
as
e
d:
C
1-
V
E
N
A
L
C
P
R

This
algorith
m will
allocate
cases to
vendors
in
percenta
ge base.
This
algorith
m is
invoked
from the
User
Allocatio
n batch
(C1-
USAL
C).
OverFlo
w cases
will get
assigne
d to
Excepti
on User
of the
queue.

422 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
f
v
e
n
d
o
r
u
s
i
n
g
v
a
ri
o
u
s
a
l
g
o
ri
t
h
m
s
.

getVe
ndorAl
locatio
nMap
();

22 Algorithm Extensions | 423

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

BulkCont
actCreati
onAlgorit
hmSpot

T
h
i
s
a
l
g
o
ri
t
h
m

s
p
o
t
i
s
u
s
e
d
f
o
r
c
r

void
setAc
countI
d
(String
accou
ntId);
void
setCo
ntact
Class
(String
conta
ctClas
s);
void
setCo
ntactT
ypeCo
de
(String
conta
ctTyp
eCod
e);
void
setMo

com.splwg.ccb.domain.collect
ion.batch.algorithm.BulkConta
ctCreationAlgoComp

com.splwg.ccb.domain.collecti
on.batch.algorithm.BulkContac
tCreationAlgoComp_Impl

B
ul
k
C
on
ta
ct
Cr
ea
tio
n:
C
1-
B
L
K
C
N
T
C
R
E

This
algorith
m type
is called
from
Bulk
Contact
Creation
Batch. It
invokes
busines
s
service
'C1-
GenMult
ipleCorr
esponde
nce'
which
creates
a
custome
r contact
for the
account
s filtered
by the
conditio
n builder
attached

424 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
a
ti
o
n
o
f
c
o
n
t
a
c
t
f
o
r
a
c
c
o
u
n
t
s
i
n
b
u
l

de
(String
mod
e);
void
setCh
aracte
risticT
ype
(String
chara
cterist
icTyp
e);
void
setCh
aracte
risticV
alue
(String
chara
cterist
icValu
e);
void
setJoi
ntNo
minati
onFor

to the
process
codes in
bulk
contact
admin.

22 Algorithm Extensions | 425

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CrossStr
ategyActi
onMatrix
Algorithm
Spot

T
h
i
s
a
l
g
o
ri
t
h
m

s
p
o
t
i
s
u

void
setCa
se
(ToDo
Case
toDoC
ase);
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus);
String
getNe
xtCas
eStatu
s();

com.splwg.ccb.domain.collect
ion.batch.algorithm.CrossStrat
egyActionMatrixAlgorithm

com.splwg.ccb.domain.collecti
on.batch.algorithm.CrossStrat
egyActionMatrixAlgorithm_
Impl

Cr
os
s
St
ra
te
gy
A
cti
on
M
at
ri
x:
C
1-
C
S
A
M

Cross
Strategy
Action
Matrix
Algorith
m Type
is used
by
Strategy
Monitor
and
case
associat
ion
process
in order
to take
actions
on
existing
strategie
s and
recomm
ended
strategie
s based
on

426 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

s
e
d
t
o
e
x
e
c
u
t
e
t
h
e
b
u
s
i
n
e
s
s
l

CSAM
Matrix.
Paramet
ers :
Check
Status-
It
checks
the
status
with
which
the
matrix
has to
be dealt
with.
Possible
values
are "Y"
or "N"

22 Algorithm Extensions | 427

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
n
t
o
a
p
a
r
ti
c
u
l
a
r
s
t
a
t
e
a
n
d
a
ll
t
h
e

428 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

Custome
rClassFt
FreezeAl
gorithmS
pot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t
h

void
setFin
ancial
Trans
action
(Finan
cialTr
ansac
tion
financi
alTran
sactio
n);
void
setFin
ancial
Trans
action
Type
(Finan
cialTr
ansac
tionTy
peLoo
kup
financi
alTran

com.splwg.ccb.domain.collect
ion.batch.algorithm.LastPaym
entDtAmtUpdateAlgorithm

com.splwg.ccb.domain.collecti
on.batch.algorithm.LastPayme
ntDtAmtUpdateAlgorithm_Impl

La
st
P
ay
m
en
t
fo
r
A
cc
ou
n
t:
C
1-
P
A
Y
D
T
A
M
T
U

This
algorith
m is
used to
stamp
the last
payment
date and
last
payment
amount
for
written
off
account
s.

22 Algorithm Extensions | 429

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

m

s
p
o
t
i
s
t
o
c
a
ll
a
n
a
l
g
o
ri
t
h
m

d

sactio
nTyp
e);
void
setRe
gularF
inanci
alTran
sactio
n
(Finan
cialTr
ansac
tion
regula
rFinan
cialTr
ansac
tion);
Bool
getFin
ancial
Trans
action
Proce
ssAdd
ed();

430 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
ri
t
h
m

f
o
r
F
T

F
r
e
e
z
e
S
y
s
t
e
m

E
v
e
n

22 Algorithm Extensions | 431

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.legal.CheckAssociation
Review

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.legal.CheckAssociation
Review_Impl

A
ss
oc
iat
io
n
R
ev
ie
w
C
he
c
k:
C
1-
A
S
O
R
V
C
H
K

This is
to
decide if
the
system
associat
ion of
entities
should
be
reviewe
d by the
user or
not. Soft
Paramet
ers:
Next
Status:
Values
Possible
for Next
Status
{ASSNE
WLSP}.
This is

432 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
ri
t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t

getNe
xtTran
sCond
ition()

applicab
le if
Associa
tion
Review
Require
d is set
N.
Associa
tion
Review
Require
d=
Possible
Values
{Y,N} If
Associa
tion
Review
is
Require
d {Y}-
Stay in
current
status
for user
review.
Set
display

22 Algorithm Extensions | 433

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

C
a
s
e
i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t

434 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

a
s
e
t
o
it
a
s
F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

22 Algorithm Extensions | 435

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String
getNe
xtTran

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.legal.DefaultNoticeExpi
ryCheck

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.legal.DefaultNoticeExpi
ryCheck_Impl

V
ali
da
te
E
xp
ire
d
D
ef
au
lt
N
oti
c
e:
C
1-
D
E
F
N
O
E
X
P

System
should
check
that for
associat
ed
account
s default
notice
has
expired,
This
check
can be
for
primary
account
or for all
associat
ed
delinque
nt
account
based
on
paramet
er. 1.

436 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e

sCond
ition()

Associa
tion
Type=
{P,A}.P
=Primar
y Type
Associa
tion,A=
Primary
as well
as
Second
ary type
associat
ion 2. To
Do
Type=
To Do
will be
created
if
validatio
n failure
option is
N. 3. To
Do
Role=
To Do
Role for

22 Algorithm Extensions | 437

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t
a
t
u
s
.

438 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.legal.CheckLegalCase

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.legal.CheckLegalCase_
Impl

A
ss
oc
iat
e
R
el
at
ed
E
nti
t
y:

The
algorith
m
checks
the
associat
ed

22 Algorithm Extensions | 439

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t
h

(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String
getNe
xtTran
sCond
ition()

C
1-
A
S
S
O
E
N
T
Y

account
s of the
primary
account.
The
associat
ion of
the
primary
account
is done
on the
basis of
the
persons
attached
to the
account
and their
financial
ly
responsi
ble
status.if
the
account

440 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e
b
u
s
i

nsible
persons
attached
as in the
case for
the
primary
account,
the
accound
is
associat
ed. The
algorith
m
paramet
er are as
follows:
1)To Do
Role:Sp
ecifies
the role
for the
To Do
Type
created
in case
of any

22 Algorithm Extensions | 441

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
n
t
o
s
p
e
c
if
i
c
s
t
a
t
u
s
.
T
h
e
s
p
e

442 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

ti
c

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.legal.CheckLegalCase

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.legal.CheckLegalCase_
Impl

V
ali
da
te
Le
ga
l
C
as
e
E
xi
st
s:
C
1-
C
H
K
L
G
L

The
Algorith
m
checks
if there
is
already
open
legal
case for
the
primary
account/
Associa
ted
account
s linked
to the
case.Th
e
algorith
m takes
the
paramet

22 Algorithm Extensions | 443

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

g
o
ri
t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t

String
getNe
xtTran
sCond
ition()

ers as
follows:
1)To Do
Role:Sp
ecifies
the Role
for the
To Do
Type.
2)To Do
Type:Sp
ecifies
the todo
type
created
when
the legal
case
has
been
created
from
batch
mode
and
there is
open
legal
case for

444 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

w
h
e
n
C
a
s
e
i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if

22 Algorithm Extensions | 445

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

n
k
s
t
h
e
C
a
s
e
t
o
it
a
s
F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

446 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String
getNe
xtTran

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.legal.AssignNewLSP

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.legal.AssignNewLSP_
Impl

A
ss
ig
n
N
e
w
L
S
P:
C
1-
A
S
G
N
L
S
P

This
algorith
m will
assign a
new
LSP to
the
current
case.
LSP is a
external
vendor
which is
mapped
LEGAL
service

22 Algorithm Extensions | 447

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e

sCond
ition()

Type. If
manual
review is
not
required
then
case will
automati
cally
transitio
n to next
status
metntion
ed in
softpara
meter.B
elow are
the

448 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t
a
t
u
s
.

on
Check:
Possible
values
{Y, N}. If
this
switch is
Y
system
will
check if
a legal
case
was
created
for any
of the
account
s
associat

22 Algorithm Extensions | 449

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

allocatio
n
without
review
option.
MANUA
L=Manu
al
allocatio
n.
System
will not
allocate
LSP. 5.
New
Allocatio
n And
Review
Option=
Possible
values
{AUTO_
WITH_
REVIE
W,AUT

450 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.legal.CreateApprovalRe
quest

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.legal.CreateApprovalRe
quest_Impl

C
he
ck
A
pp
ro
va
l
R
eq
uir
e
m
en
t:
C
1-
A
P
P
R
C
H
K

This
algorith
m
creates
approval
request
if
required
based
on
certain
conditio
ns.This
process
will
check if
LSP
assignm
ent
needs to
be
approve

22 Algorithm Extensions | 451

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
ri
t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t

getNe
xtTran
sCond
ition()

d if LSP
assignm
ent
status =
"Pendin
g
Approva
l"
Approval
would be
required
if either
of below
is true: -
System
allocatio
n
override
by user
i.e. user
has
changed
the LSP
assigne
d by the

452 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

C
a
s
e
i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t

a
specifie
d
threshol
d.
Howeve
r if no
threshol
d has
been
specifie
d this
paramet
er
should
be
ignored.
Set
Approval
Reason
as "High
Exposur
e". - In
case
approval
is
required
for both
the

22 Algorithm Extensions | 453

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

a
s
e
t
o
it
a
s
F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

454 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String
getNe
xtTran

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.legal.ResumeStatusLS
P

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.legal.ResumeStatusLS
P_Impl

R
es
u
m
e
St
at
us
fr
o
m
Pr
ev
io
us
L
S
P:
C
1-
R
E
S
S
T
A
T
U
S

Algorith
m to
resume
previous
status

22 Algorithm Extensions | 455

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e

sCond
ition()

456 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t
a
t
u
s
.

22 Algorithm Extensions | 457

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

CaseTyp
eExitStat
usAlgorit
hmSpot

T
h
e
p
u
r

void
setCa
se
(ToDo
Case
toDoC
ase);
void
setNe
xtCas
eStatu
s
(Case

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.legal.CheckSubmission
DateExitProcessing

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.legal.CheckSubmission
DateExitProcessing_Impl

C
he
ck
S
ub
mi
ss
io
n
D
at
e:
C

Check
Submis
sion
Date

458 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t
h
m

s
p
o
t
i
s
t

Status
caseS
tatus);

1-
C
H
K
S
U
B
D
T
2

22 Algorithm Extensions | 459

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

r
m

a
d
d
it
i
o
n
a
l
l
o
g
i
c
w
h
e
n
a
C
a
s
e
t

460 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
x
t
s
t
a
t
u
s
.

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.legal.UpdateLSPAssign
ment

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.legal.UpdateLSPAssign
ment_Impl

U
pd
at
e
L
S
P
(C
L
O
S)
:
C
1-
L
S
P
S
T

Set LSP
assignm
ent
status to
value
provided
in the
paramet
er. This
should
be done
only for
Latest
LSP
assignm
ent and
if it was

22 Algorithm Extensions | 461

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
o
f
t
h
e
a
l
g
o
ri
t
h
m

s
p
o
t
i
s

utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String
getNe
xtTran
sCond
ition()

A
T
U
S

done by
current
legal
case. If
Status =
Closed
or
Cancell
ed set
Assign
ment
End date
=
Busines
s Date
Status
possible
values
{CLOS,
REJ,CA
N,PNA
P}
CLOS=
Closed
REJ=R
ejected
PNAP=
Pending
for
Approva

462 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

t
h
e
b
u
s
i
n
e
s
s
l
o
g
i
c
w
h
e
n
C
a

22 Algorithm Extensions | 463

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

s
a
m
p
l
e
a
l
g
o
ri
t
h
m

c
r
e
a
t
e
s
T
o
D
o
e
n

464 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.legal

V
ali
da
te
E
xp
ire
d
D
ef
au
lt
N
oti
c
e:
C
1-
D
E
F
N
O
E
X
P

System
should
check
that for
associat
ed
account
s default
notice
has
expired,
This
check
can be
for
primary
account
or for all
associat
ed
delinque
nt
account
based
on

22 Algorithm Extensions | 465

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
ri
t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t

getNe
xtTran
sCond
ition()

paramet
er. 1.
Associa
tion
Type=
{P,A}.P
=Primar
y Type
Associa
tion,A=
Primary
as well
as
Second
ary type
associat
ion 2. To
Do
Type=
To Do
will be
created
if
validatio
n failure
option is
N. 3. To
Do
Role=

466 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

C
a
s
e
i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t

22 Algorithm Extensions | 467

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

a
s
e
t
o
it
a
s
F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

468 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String
getNe
xtTran

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.CollateralV
erification

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.CollateralVe
rification_Impl

C
oll
at
er
al
V
eri
fic
ati
o
n:
C
1-
V
R
F
Y
C
O
L
S

This will
perform
following
validatio
ns for
the
collatera
l with the
case: - If
soft
paramet
er
Collater
al type
to this
algorith
m type
is
"PROP
ERTY"
then,
Only one
collatera
l is
associat
ed with

22 Algorithm Extensions | 469

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e

sCond
ition()

the case
also that
Collater
al is
associat
ed with
Facility
for the
primary
account
associat
ed with
the
case. - If
collatera
l type
soft
paramet
er is
blank,
then
above
validatio
n should
be
ignored
and
Collater

470 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t
a
t
u
s
.

should
be
terminat
ed

22 Algorithm Extensions | 471

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.AccountAs
sociationForAssetRepossessi
onCase

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.AccountAss
ociationForAssetRepossessio
nCase_Impl

A
cc
ou
nt
A
ss
oc
iat
io
n
fo
r

This
algorith
m will
perform
following
actions:
- It will
get all
facilities
to which

472 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t
h

(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String
getNe
xtTran
sCond
ition()

A
ss
et
R
ep
os
se
ss
io
n
C
as
e:
C
1-
A
R
S
A
C
C
T
S

this
collatera
l is
associat
ed also it
will get
all
account
s for
these
facilitie
s. - It will
Associa
te these
account
s with
the
case.
Scope of
this
associat
ion is
limited
to
account
s
already
in
collectio

22 Algorithm Extensions | 473

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e
b
u
s
i

oesn't
have
any soft
paramet
er.

474 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
n
t
o
s
p
e
c
if
i
c
s
t
a
t
u
s
.
T
h
e
s
p
e

22 Algorithm Extensions | 475

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

ti
c

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.CustomerA
ssociationForAssetReposses
sionCase

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.CustomerA
ssociationForAssetRepossess
ionCase_Impl

C
us
to
m
er
A
ss
oc
iat
io
n
fo
r
A
ss
et
R
ep
os
se
ss
io
n
C
as
e:
C

This
algorith
m will
perform
following
actions:
- It will
get all
custome
rs who
are the
owners
for the
selected
collatera
l. -It will
Associa
te these
custome
rs with
the case
Scope of
this
associat
ion is
limited

476 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

g
o
ri
t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t

String
getNe
xtTran
sCond
ition()

1-
A
R
S
C
U
S
T
S

to
custome
rs
already
in
collectio
ns. This
process
will not
check
for any
custome
rs not in
collectio
ns. This
algorith
m
doesn't
have
any soft
paramet
er.

22 Algorithm Extensions | 477

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

w
h
e
n
C
a
s
e
i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if

478 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

n
k
s
t
h
e
C
a
s
e
t
o
it
a
s
F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

22 Algorithm Extensions | 479

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String
getNe
xtTran

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.UpdateColl
ateralProperty

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.UpdateColl
ateralProperty_Impl

U
pd
at
e
C
oll
at
er
al
Pr
op
er
t
y:
C
1-
U
P
C
O
L
P
R
O
P

This
algorith
m will
perform
foolowin
g
operatio
ns: 1)if
the
value of
updateC
ollateral
Property
soft
paramet
er is
"SET"
and type
of
possess
ion is
"Warran
t" then
Fetch
the
collatera
l for

480 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e

sCond
ition()

which
case is
created
and
update
the IS_
LEGAL_
SW=
"Y" and
populate
the
case_id
on this
collatera
l. 2)if the
value of
updateC
ollateral
Property
soft
paramet
er is
"RESE
T" then
Fetch
the
collatera
l for
which

22 Algorithm Extensions | 481

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t
a
t
u
s
.

482 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

CaseTyp
eExitStat
usAlgorit
hmSpot

void
setCa
se
(ToDo
Case
toDoC
ase);
void
setNe
xtCas
eStatu
s
(Case

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.CloseTodo

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.CloseTodo_Impl

Cl
os
e
T
o
do
's
Al
go
rit
h
m
:

This
process
will
close all
To-Do's
of
specific
To-do
types
associat
ed with
the
case.

22 Algorithm Extensions | 483

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

Status
caseS
tatus);

C
1-
C
L
S
T
O
D
O

Up to 5
To-DO
types
can be
given to
this
algorith
m to
close.

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.Mandatory
Characteristics

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.MandatoryC
haracteristics_Impl

V
ali
da
tio
ns
fo
r
M
an
da
to
ry
C
ha
ra
ct
eri
sti
c
s:

Subjecti
ve
Validatio
ns for
Mandato
ry
Charact
eristics:
This
process
will
validate
specifie
d
characte
ristics to

484 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
f
t
h
e
a
l
g
o
ri
t
h
m

s
p
o
t
i
s
t

nsition
()
String
getNe
xtCas
eStatu
s()
String
getNe
xtTran
sCond
ition()

C
1-
C
H
A
R
V
A
L
S

be
present
on the
case
with
referenc
e to
value
selected
by the
user for
one of
the
characte
ristics.
This
algorith
m will
have
referenc
e
characte
ristic
type and
up to 5
validatio
n

22 Algorithm Extensions | 485

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
b
u
s
i
n
e
s
s
l
o
g
i
c
w
h
e
n
C
a
s
e
i

ic,
system
should
validate
that
mandato
ry
characte
ristic
types
have
some
value
capture
d. If the
paramet
er
specifyi
ng
mandato
ry
characte
ristic
type is
blank, it
should
be
ignored

486 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

a
l
g
o
ri
t
h
m

c
r
e
a
t
e
s
T
o
D
o
e
n
t
r
y
a
n
d

22 Algorithm Extensions | 487

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.Mandatory
Characteristics

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.MandatoryC
haracteristics_Impl

V
ali
da
tio
ns
fo
r
M
an
da
to
ry
C
ha
ra
ct
eri
sti
c
s:
C
I_
C
H
A
R
V
A
L

Subjecti
ve
Validatio
ns for
Mandato
ry
Charact
eristics:
This
process
will
validate
specifie
d
characte
ristics to
be
present
on the
case
with
referenc
e to
value

488 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
ri
t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t

getNe
xtTran
sCond
ition()

selected
by the
user for
one of
the
characte
ristics.
This
algorith
m will
have
referenc
e
characte
ristic
type and
up to 5
validatio
n
characte
ristic
type as
paramet
ers,So
based
on the
referenc
e

22 Algorithm Extensions | 489

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

C
a
s
e
i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t

pecifyin
g
mandato
ry
characte
ristic
type is
blank, it
should
be
ignored

490 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

a
s
e
t
o
it
a
s
F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

22 Algorithm Extensions | 491

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String
getNe
xtTran

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.UpdateColl
ateralStatusInTheHost

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.UpdateColl
ateralStatusInTheHost_Impl

U
pd
at
e
C
oll
at
er
al
St
at
us
in
th
e
H
os
t:
C
1-
C
H
A
R
V
A
L
Z

Subjecti
ve
Validatio
ns for
Mandato
ry
Charact
eristics:
This
process
will
validate
specifie
d
characte
ristics to
be
present
on the
case
with
referenc
e to
value
selected
by the

492 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e

sCond
ition()

user for
one of
the
characte
ristics.
This
algorith
m will
have
referenc
e
characte
ristic
type and
up to 5
validatio
n
characte
ristic
type as
paramet
ers,So
based
on the
referenc
e
characte
ristic

22 Algorithm Extensions | 493

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t
a
t
u
s
.

tic type
is blank,
it should
be
ignored

494 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.UpdateColl
ateralStatusInTheHost

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.UpdateColl
ateralStatusInTheHost_Impl

Ini
tia
te
C
oll
at
er
al
V
al
ua
tio
n:

this
alogrith
m will
work as
follows:
System

22 Algorithm Extensions | 495

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t
h

(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String
getNe
xtTran
sCond
ition()

C
1-
C
O
LL
V
A
L
X

should
check if
"X" days
have
elapsed
since
the last
assess
ment
was
done for
the
collatera
l. That is
check if
(Assess
ment
date +
X) <=
Current
busines
s date.
Number
of days,
X, will

496 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e
b
u
s
i

or this
process.
If yes -
Create a
To Do to
alert the
user that
collatera
l
valuatio
n is
required.
This To
Do
should
be
associat
ed with
the
case. To
Do Type
is
passed
as a
paramet
er to the
process.

22 Algorithm Extensions | 497

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
n
t
o
s
p
e
c
if
i
c
s
t
a
t
u
s
.
T
h
e
s
p
e

To Do
should
be
assigne
d to the
default
role.

498 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

ti
c

CaseTyp
eExitStat
usAlgorit
hmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t

void
setCa
se
(ToDo
Case
toDoC
ase);
void
setNe
xtCas
eStatu
s
(Case
Status
caseS
tatus);

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.CloseTodo

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.CloseTodo_Impl

Cl
os
e
T
o
do
's
Al
go
rit
h
m
:
C
1-
C
L
S
T
O
D
O

This
process
will
close all
To-Do's
of
specific
To-do
types
associat
ed with
the
case.
Up to 5
To-DO
types
can be
given to
this
algorith
m to
close.

22 Algorithm Extensions | 499

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

h
m

s
p
o
t
i
s
t
o
p
e
r
f
o
r
m

a
d
d
it
i
o
n

500 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

it
i
o
n
s
o
u
t
o
f
t
h
e
c
u
r
r
e
n
t
s
t
a
t
u
s
t
o
t

22 Algorithm Extensions | 501

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.Mandatory
Characteristics

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.MandatoryC
haracteristics_Impl

V
ali
da
tio
ns
fo
r
M
an
da
to
ry
C
ha
ra
ct
eri
sti
cs
:C
1-
C
H
A
R
V
A
L
S

Subjecti
ve
Validatio
ns for
Mandato
ry
Charact
eristics:
This
process
will
validate
specifie
d
characte
ristics to
be
present
on the
case
with
referenc
e to
value

502 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
ri
t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t

getNe
xtTran
sCond
ition()

selected
by the
user for
one of
the
characte
ristics.
This
algorith
m will
have
referenc
e
characte
ristic
type and
up to 5
validatio
n
characte
ristic
type as
paramet
ers,So
based
on the
referenc
e

22 Algorithm Extensions | 503

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

C
a
s
e
i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t

pecifyin
g
mandato
ry
characte
ristic
type is
blank, it
should
be
ignored

504 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

a
s
e
t
o
it
a
s
F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

22 Algorithm Extensions | 505

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri

void
setCa
se
(ToDo
Case
toDoC
ase);
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus);
Bool
getSh
ouldA
utoTra
nsition
();
String
getNe
xtCas
eStatu
s();
String
getNe
xtTran

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.UpdateColl
ateralStatusInTheHost

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.UpdateColl
ateralStatusInTheHost_Impl

U
pd
at
e
C
oll
at
er
al
St
at
us
in
th
e
H
os
t:
C
1-
C
H
A
R
V
A
L
Z

Subjecti
ve
Validatio
ns for
Mandato
ry
Charact
eristics:
This
process
will
validate
specifie
d
characte
ristics to
be
present
on the
case
with
referenc
e to
value
selected
by the

506 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e

sCond
ition();

user for
one of
the
characte
ristics.
This
algorith
m will
have
referenc
e
characte
ristic
type and
up to 5
validatio
n
characte
ristic
type as
paramet
ers,So
based
on the
referenc
e
characte
ristic

22 Algorithm Extensions | 507

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t
a
t
u
s
.

tic type
is blank,
it should
be
ignored

508 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

CaseTyp
eExitStat
usAlgorit
hmSpot

T
h
e
p
u
r

void
setCa
se
(ToDo
Case
toDoC
ase);
void
setNe
xtCas
eStatu
s
(Case

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.ValidateCol
lateralSettlementStatus

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.ValidateColl
ateralSettlementStatus_Impl

V
ali
da
tio
n
S
et
tle
m
en
t:
C
1-

This
algorith
m will
perform
following
actions:
Before
completi
ng the
asset

22 Algorithm Extensions | 509

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t
h
m

s
p
o
t
i
s
t

Status
caseS
tatus);

V
A
L
S
E
T

reposse
ssion
case
below
validatio
ns
should
be done
for the
case 1.
Collater
al should
have a
settleme
nt date
2.
Realizat
ion
status
for the
collatera
l should
be
"REALI
ZATIO
N_
COMPL
ETE"
Possible

510 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

r
m

a
d
d
it
i
o
n
a
l
l
o
g
i
c
w
h
e
n
a
C
a
s
e
t

COMPL
ETE.
Transitio
n to
complet
ed
status
should
fail if
above
validatio
ns fail.

22 Algorithm Extensions | 511

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
x
t
s
t
a
t
u
s
.

CaseTyp
eExitStat
usAlgorit
hmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t

void
setCa
se
(ToDo
Case
toDoC
ase);
void
setNe
xtCas
eStatu
s
(Case
Status
caseS
tatus);

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.InitiateLMIP

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.InitiateLMI
P_Impl

Ini
tia
te
L
M
I
Pr
oc
es
s:
C
1-
IN
IT
L
M
I

Paramet
ers to
the
algorith
mmust
be as
follows:
- For
Initiate
LMI
Options:
1)
"Initiate
LMI with
highest
insured
amount"

512 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

h
e
a
l
g
o
ri
t
h
m

s
p
o
t
i
s
t
o
p
e
r
f
o
r

use
HIGH_
INSUR_
AMT 2)
"Initiate
LMI from
a
specific
insurer
first" use
SPEC_
INSUR
ER. -
For No
LMI
Option
1)"Mark
primary
account
for
strategy
review"
use
PRIMA
RY
2)"Mark
all
account
s for
strategy

22 Algorithm Extensions | 513

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
c
w
h
e
n
a
C
a
s
e
t
r
a
n
s
it
i
o
n
s
o
u
t
o
f
t
h

514 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eExitStat
usAlgorit
hmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t
h

void
setCa
se
(ToDo
Case
toDoC
ase);
void
setNe
xtCas
eStatu
s
(Case
Status
caseS
tatus);

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.CloseTodo

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.CloseTodo_Impl

Cl
os
e
T
o
do
's
Al
go
rit
h
m
:
C
1-
C
L
S
T
O
D
O

This
process
will
close all
To-Do's
of
specific
To-do
types
associat
ed with
the
case.
Up to 5
To-DO
types
can be
given to
this
algorith
m to
close.

22 Algorithm Extensions | 515

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

m

s
p
o
t
i
s
t
o
p
e
r
f
o
r
m

a
d
d
it
i
o
n
a

516 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
o
n
s
o
u
t
o
f
t
h
e
c
u
r
r
e
n
t
s
t
a
t
u
s
t
o
t
h
e

22 Algorithm Extensions | 517

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.UpdateColl
ateralProperty

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.UpdateColl
ateralProperty_Impl

U
pd
at
e
C
oll
at
er
al
Pr
op
er
t
y:
C
1-
U
P
C
O
L
P
R
O
P

This
algorith
m will
perform
foolowin
g
operatio
ns: 1)if
the
value of
updateC
ollateral
Property
soft
paramet
er is
"SET"
and type
of
possess
ion is
"Warran
t" then
Fetch
the

518 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
ri
t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t

getNe
xtTran
sCond
ition()

collatera
l for
which
case is
created
and
update
the IS_
LEGAL_
SW=
"Y" and
populate
the
case_id
on this
collatera
l. 2)if the
value of
updateC
ollateral
Property
soft
paramet
er is
"RESE
T" then
Fetch
the
collatera

22 Algorithm Extensions | 519

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

C
a
s
e
i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t

520 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

a
s
e
t
o
it
a
s
F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

22 Algorithm Extensions | 521

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String
getNe
xtTran

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.UpdateColl
ateralStatusInTheHost

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.UpdateColl
ateralStatusInTheHost_Impl

U
pd
at
e
C
oll
at
er
al
St
at
us
in
th
e
H
os
t:
C
1-
U
P
C
O
LL
S
T
S

Update
Collater
al Status
in the
host

522 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e

sCond
ition()

22 Algorithm Extensions | 523

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t
a
t
u
s
.

524 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

PtpActiv
eForNgp
Algorithm
Spot

T
h
i
s
a
l
g

void
setPro
miseT
oPay
(Promi
seToP
ay
promi
seToP
ay);
Paym
entPla
nStatu

com.splwg.ccb.domain.custo
merinfo.paymentPlan.Collecti
onPTPActiveForNgpAlgorithm

com.splwg.ccb.domain.custo
merinfo.paymentPlan.Collectio
nPTPActiveForNgpAlgorithm_
Impl

P
T
P
A
cti
ve
Al
go
rit
h
m
:
C

This
algorith
m is
used to
perform
addition
al

22 Algorithm Extensions | 525

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
ri
t
h
m

s
p
o
t
i
s
u
s
e
d
f
o
r
p
e
r
f
o
r
m

sLook
up
getPa
yment
PlanS
tatus
();

1-
P
T
P
A
C
TI
V
E

processi
ng when
the
status of
a PTP
become
s Active.
Custom
er
Contact
s can be
generate
d via this
algorith
m.Conta
ct
Class,
method
and type
have to
be
specifie
d.
Followin
g
paramet

526 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

ti
o
n
a
l
p
r
o
c
e
s
s
i
n
g
li
k
e
g
e
n
e
r
a
ti
o
n
o

ypeForL
etter --
Contact
Type for
Letter.
2)contac
tClassF
orLetter -
-
Contact
Class
for
Letter.
3)contac
tMethod
ForLette
r --
Contact
Method
for
Letter.
(Value
should
be --
OTBL
(Outbou
nd
Letter))

22 Algorithm Extensions | 527

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

PtpKeptF
orNgpAlg
orithmSp
ot

T
h
i
s
a
l
g
o
ri
t
h
m

s
p
o
t
i
s
u
s
e
d
f
o

void
setPro
miseT
oPay
(Promi
seToP
ay
promi
seToP
ay);
Paym
entPla
nStatu
sLook
up
getPa
yment
PlanS
tatus
();

com.splwg.ccb.domain.custo
merinfo.paymentPlan.Collecti
onPTPKeptForNgpAlgorithm

com.splwg.ccb.domain.custo
merinfo.paymentPlan.Collectio
nPTPKeptForNgpAlgorithm_
Impl

P
T
P
A
cti
ve
Al
go
rit
h
m
:
C
1-
P
T
P
K
E
P
T

This
algorith
m is
used to
perform
addition
al
processi
ng when
the
status of
a PTP
become
s Kept.
Custom
er
Contact
s can be
generate
d via this
algorith
m.
Contact

528 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

r
p
e
r
f
o
r
m
i
n
g
a
d
d
it
i
o
n
a
l
p
r
o
c
e
s
s
i
n

Class,
method
and type
have to
be
specifie
d.
Followin
g
paramet
ers used
to
perform
processi
ng--- 1)
contact
TypeFor
Letter --
Contact
Type for
Letter.
2)contac
tClassF
orLetter -
-
Contact
Class

22 Algorithm Extensions | 529

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

ntactCla
ssForS
MS---
Contact
Class
for SMS.
6)contac
tMethod
ForSM
S---
Contact
Method
for SMS.
(Value
should
be--
OTBS
(Outbou
nd Short
Messag
e
Servic
e))

530 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

PtpBroke
nForNgp
Algorithm
Spot

T
h
i
s
A
l
g
o
ri
t
h
m

s
p
o
t
i
s
u
s
e
d
f
o
r
p

void
setPro
miseT
oPay
(Promi
seToP
ay
promi
seToP
ay);
Paym
entPla
nStatu
sLook
up
getPa
yment
PlanS
tatus
();

com.splwg.ccb.domain.custo
merinfo.paymentPlan.Collecti
onPTPBrokenForNgpAlgorith
m

com.splwg.ccb.domain.custo
merinfo.paymentPlan.Collectio
nPTPBrokenForNgpAlgorithm_
Impl

P
T
P
Br
ok
en
Al
go
rit
h
m
:
C
1-
B
R
K
P
T
P
N
G
P

This
algorith
m is
used to
perform
addition
al
processi
ng when
the
status of
a PTP is
set to
Broken.
Custom
er
Contact
s can be
generate
d via this
algorith
m.
Followin
g
paramet
ers used

22 Algorithm Extensions | 531

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
r
f
o
r
m
i
n
g
a
d
d
it
i
o
n
a
l
p
r
o
c
e
s
s
i
n
g
w

to
perform
processi
ng--- 1)
contact
TypeFor
Letter --
Contact
Type for
Letter.
2)contac
tClassF
orLetter -
-
Contact
Class
for
Letter.
3)contac
tMethod
ForLette
r --
Contact
Method
for
Letter.
(Value
should

532 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

ld be--
OTBS
(Outbou
nd Short
Messag
e
Servic
e))

RuleFact
sPopulati
onAlgorit
hmSpot

T
h
i
s
A
l
g
o
ri
t
h
m

s
p
o
t
i

void
setInp
utKey
Value
1
(String
inputK
ayVal
ue1);
void
setInp
utKey
Value
2
(String
inputK

com.splwg.ccb.domain.collect
ion.RuleFactsPopulation

com.splwg.ccb.domain.collecti
on.RuleFactsPopulation_Impl

R
ul
e
fa
ct
s
po
pu
lat
in
g
al
go
rit
h
m
:
C
1-
B
R

This
algorith
m is
used to
populate
the facts
required
for rule
engine.
Input
Key
Input
Key 1 to
5
represen

22 Algorithm Extensions | 533

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

s
u
s
e
d
f
o
r
p
o
p
u
l
a
ti
n
g
f
a
c
t
s
w
h
i
c
h
a
r

ayVal
ue2);
void
setInp
utKey
Value
3
(String
inputK
ayVal
ue3);
void
setInp
utKey
Value
4
(String
inputK
ayVal
ue4);
void
setInp
utKey
Value
5
(String
inputK

L
S
R

t primary
key of
BO(used
in Input
BO
name 1 -
5) Note:
Currentl
y you
can use
only
Input
key 1,2
and 3
and
Input BO
1,2 and
3 Valid
values in
Input
key and
Input BO
Input
key 1
(Mandat
ory)

534 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

n
g
i
n
e
.

void
setRul
eEffec
tiveDa
te
(String
ruleEff
ective
Date);
void
setFa
ctDet
ails
(Colle
ctions
FactD
etailsL
oader
collect
ionsF
actDe
tailsLo
ader);
RuleF
actPar
amete
rs
getRul
eFact
Param

Main
Custom
er PER_
ID for
given
account
ID (No
other
input
value
allowed)
Input
key 4
NA Input
key 5
NA Input
BO
name 1
(Mandat
ory) C1-
ACCT-
EXTN
Input BO
name 2
BO
having
primary
key as
input

22 Algorithm Extensions | 535

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssociateDelinquentAc
count

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssociateDelinquentAc
count_Impl

B
or
ro
w
er
C
en
tri
c
C
as
e
Lif
ec
yc
le-
C
1-
A
S
S
O
D
E
L
A
C

Associa
te new
delinque
nt
account
of the
custome
r to the
case.

536 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
ri
t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t

getNe
xtTran
sCond
ition()

22 Algorithm Extensions | 537

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

C
a
s
e
i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t

538 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

a
s
e
t
o
it
a
s
F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

Preproce
ssBusine
ssObject
Request
Algorithm
Spot

com.splwg.ccb.domain.collect
ion.address.PersonCollection
AddressPreProcess

com.splwg.ccb.domain.collecti
on.address.PersonCollectionA
ddressPostProcess_Impl

U
pd
at
e
C

This is a
referenc
e
impleme
ntation
of Post

22 Algorithm Extensions | 539

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

oll
ec
tio
n
A
dd
re
ss
on
B
or
ro
w
er
P
an
el-
C
1-
P
E
R
A
D
D
P
P

processi
ng Algo.
Customi
zation
team
can
utilize
this
hook.

Preproce
ssBusine

com.splwg.ccb.domain.collect
ion.address.ContactPreferenc
ePreProcess

com.splwg.ccb.domain.collecti
on.address.ContactPreference
PreProcess_Impl

U Contact

540 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

ssObject
Request
Algorithm
Spot

pd
at
e
C
oll
ec
tio
n
C
on
ta
ct
P
oi
n
t-
C
1-
P
C
O
N
T
P
R
E

Point
PreProc
essing
algorith
m.
Attache
d on BO
pre
processi
ng spot.
This is a
hook
provided
to
customi
zation.
This can
be
utilized
to
validate
the
contact
point
data.

22 Algorithm Extensions | 541

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String
getNe
xtTran

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.bankruptcy.CheckBank
ruptcyCaseExist

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.bankruptcy.CheckBankr
uptcyCaseExist_Impl

C
he
ck
if
S
pe
ci
al
C
as
e
Al
re
ad
y
E
xi
st
on
th
e
C
us
to
m
e
r-
E
nt

Check if
any
active
case is
present
of a
given
case
category
or case
type on
the
custome
r
Process
ing
steps
are as
below 1.
If only
Case
Categor
y is
specifie
d check
if any

542 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e

sCond
ition()

er
Pr
oc
es
si
n
g:
C
1-
C
K
S
P
L
C
A
S
E

active
case is
running
on the
custome
r whose
a. Case
category
is same
as the
paramet
er set for
the
algorith
m 2. If
Case
Type is
specifie
d check
if any
active
case is
running
on the
custome
r whose
a. Case
type is

22 Algorithm Extensions | 543

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t
a
t
u
s
.

.
Conside
r
Enterpri
se Id
value
should
be
"YES" or
"NO"

544 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.bankruptcy.Bankruptcy
PullNonDelinquentAcc

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.bankruptcy.Bankruptcy
PullNonDelinquentAcc_Impl

P
ull
all
th
e
no
n
de
lin
qu
en

Process
ing
steps
are as
below: -
Pull all

22 Algorithm Extensions | 545

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t
h

(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String
getNe
xtTran
sCond
ition()

t
ac
co
un
ts
of
th
e
cu
st
o
m
er
int
o
co
lle
cti
on
s -
E
nt
er
Pr
oc
es
si
n
g:
C

Not in
Collecti
ons
account
s into
OB
Collecti
ons
(from
OBP)
where
the
associat
ed
custome
r is one
of the
borrowe
r. - If
Account
Relation
ships =
MC
consider
only the

546 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e
b
u
s
i

er. If
Account
Relation
ships =
FO
consider
all
account
s where
the
custome
r is a
financial
owner. If
Account
Relation
ship =
All
consider
all
account
s where
the
custome
r is a
financial
or non

22 Algorithm Extensions | 547

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
n
t
o
s
p
e
c
if
i
c
s
t
a
t
u
s
.
T
h
e
s
p
e

, ALL
Possible
Values
fro
Conside
r
Enterpri
se Id
Yes/No

548 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

ti
c

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.bankruptcy.Bankruptcy
AssociateAcc

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.bankruptcy.Bankruptcy
AssociateAcc_Impl

A
ss
oc
iat
e
all
ac
co
un
ts
to
th
e
ca
se
w
he
re
cu
st
o
m
er
is
a

Associa
te all
account
s to the
case
where
custome
r is a
primary
borrower
For the
primary
custome
r
associat
ed with
the
case: -
Get all
account
s where
this
custome
r is

22 Algorithm Extensions | 549

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

g
o
ri
t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t

String
getNe
xtTran
sCond
ition()

pri
m
ar
y
bo
rr
o
w
e
r-
E
nt
er
Pr
oc
es
si
n
g:
C
1-
A
S
S
C
T
E
A
C
C

primary
owner
and the
account
s are In
Collecti
ons.
(Fetch
account
s based
on
Enterpri
se Id if
Conside
r
Enterpri
se ID =
Y). -
Shortlist
the
account
s that
are not
yet
associat
ed with
the
case. -
Associa

550 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

w
h
e
n
C
a
s
e
i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if

22 Algorithm Extensions | 551

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

n
k
s
t
h
e
C
a
s
e
t
o
it
a
s
F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

552 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String
getNe
xtTran

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.bankruptcy.Bankruptcy
ExcludeAccDlr

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.bankruptcy.Bankruptcy
ExcludeAccDlr_Impl

E
xc
lu
de
all
th
e
as
so
ci
at
ed
ac
co
un
ts
fr
o
m
Di
al
e
r-
E
nt
er
Pr
oc
es
si

For all
the
account
s
associat
ed with
the
case: -
Call the
Dialer
Exclusio
n
Service
to
exclude
the
account
s from
feed to
Dialer

22 Algorithm Extensions | 553

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e

sCond
ition()

n
g:
C
1-
E
xc
A
cc
Dl
r

554 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t
a
t
u
s
.

22 Algorithm Extensions | 555

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.bankruptcy.BankruptcyI
nitiateCollateralValuation

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.bankruptcy.BankruptcyI
nitiateCollateralValuation_Impl

Ini
tia
te
C
oll
at
er
al
V
al

For each
collatera
l on the
associat
ed
account
if last
valuatio
n was
done 'X'

556 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t
h

(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String
getNe
xtTran
sCond
ition()

ua
tio
n
fo
r
all
co
lla
te
ral
s
w
ho
se
la
st
va
lu
ati
on
w
as
do
ne
'X
'
da
ys
be

days
before
than
create a
Collater
al
Valuatio
n Task.
Enter
the
Collater
al Code;
Collater
al Type
and
Collater
al
Descript
ion as
Remark
s
Exclude
Collater
als with
Collater
al Types
specifie
d in
paramet

22 Algorithm Extensions | 557

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e
b
u
s
i

C
1-
Ini
Cl
tV
al

es of
Validatio
n Date:
POSTIN
G
DATE,
SYSTE
MDATE

558 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
n
t
o
s
p
e
c
if
i
c
s
t
a
t
u
s
.
T
h
e
s
p
e

22 Algorithm Extensions | 559

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

ti
c

CaseTyp
eAutoTra
nsitionAl
gorithmS
pot

T
h
i
s
a
l
g
o
ri
t
h
m

t
y
p
e
i
s
u
s
e
d
t
o

void
setCa
se
(ToDo
Case
toDoC
ase);
Bool
getSh
ouldA
utoTra
nsition
();
Case
Status
getNe
xtCas
eStatu
s();
String
getNe
xtTran
sCond
ition();

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.bankruptcy.Bankruptcy
MonitorChargeOffDelinquency

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.bankruptcy.Bankruptcy
MonitorChargeOffDelinquenc
y_Impl

M
on
ito
r if
an
y
of
th
e
as
so
ci
at
ed
ac
co
un
t
ne
ed
to
be
ch
ar
ge

If any of
the
associat
ed
account
has
delinque
ncy
Start
Date =
Today's
posting
date
Create
Bankrup
tcy
Notificat
ion as:
'Account
<Accou
nt
Numbe

560 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

p
e
r
f
o
r
m

a
u
t
o
t
r
a
n
s
it
i
o
n
p
r
o
c
e
s
s
i
n

d
of
f
an
d
m
on
ito
r
de
lin
qu
en
c
y-
M
on
ito
rin
g:
C
1-
M
T
R
C
R
G
D
Q

r> has
become
Delinqu
ent' Set
Display
Date of
the case
to
current
busines
s date.
Monitor
Charge
Off: If
any of
the
associat
ed
account
has
DPD=
Charge
Off
Threshol
d Create
Bankrup

22 Algorithm Extensions | 561

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

= Yes
than
associat
ed
account
s with
Secured
Switch =
Y should
also be
consider
ed.
Monitor
Delinqu
ency =
"Y" or
"N"
,Monitor
Charge
Off = "Y"
or "N"
,Secure
d
Account
s = "Y"
or "N"
Values
of
Validatio
n Date:

562 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eAutoTra
nsitionAl
gorithmS
pot

T
h
i
s
a
l
g
o
ri
t
h
m

t
y
p
e
i
s
u
s
e
d
t
o
p

void
setCa
se
(ToDo
Case
toDoC
ase);
Bool
getSh
ouldA
utoTra
nsition
();
Case
Status
getNe
xtCas
eStatu
s();
String
getNe
xtTran
sCond
ition();

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.bankruptcy.Bankruptcy
Monitor341Hearing

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.bankruptcy.Bankruptcy
Monitor341Hearing_Impl

N
oti
fy
th
e
B
an
kr
up
tc
y
S
pe
ci
ali
st
on
H
ea
rin
g
D
at
e
s-
M
on
ito

If 341
Hearing
Date
has
been
captured
and is in
future
Create a
notificati
on for
the
Bankrup
tcy
Speciali
st when
the 341
Hearing
date has
been
passed.
i.e.
when

22 Algorithm Extensions | 563

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
r
f
o
r
m

a
u
t
o
t
r
a
n
s
it
i
o
n
p
r
o
c
e
s
s
i
n
g

rin
g:
C
1-
M
T
R
34
1
H
R
G

Busines
s Date =
341
Hearing
Date + 1
Notificat
ion:
"Capture
details
of 341
Hearing"
Set
Display
Date of
the case
to
current
Busines
s Date If
Objectio
n
Hearing
Date
has
been
captured
and is in

564 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

Notificat
ion:
"Capture
details
of
Objectio
n
Hearing
for
Debtors
Propose
d Plan"
Set
Display
Date of
the case
to
current
Busines
s Date
Values
of
Validatio
n Date:
POSTIN
G
DATE,
SYSTE
MDATE

22 Algorithm Extensions | 565

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eAutoTra
nsitionAl
gorithmS
pot

T
h
i
s
a
l
g
o
ri
t
h
m

t
y
p
e
i
s
u
s
e
d
t
o
p
e
r

void
setCa
se
(ToDo
Case
toDoC
ase);
Bool
getSh
ouldA
utoTra
nsition
();
Case
Status
getNe
xtCas
eStatu
s();
String
getNe
xtTran
sCond
ition();

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.bankruptcy.Bankruptcy
MonitorPaymentPlan

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.bankruptcy.Bankruptcy
MonitorPaymentPlan_Impl

M
on
ito
r if
th
e
pa
y
m
en
t
pl
an
on
an
y
of
th
e
as
so
ci
at
ed
ac
co
un
ts

If for any
of the
associat
ed
account
on the
case the
days
since
the last
PTP
Broken
reaches
X days a
notificati
on
should
be
created
on the
case.
The PTP
Type
specifie
d in the
paramet
er
should

566 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

f
o
r
m

a
u
t
o
t
r
a
n
s
it
i
o
n
p
r
o
c
e
s
s
i
n
g
f
o

is
Br
ok
en
fo
r
m
or
e
th
an
x
da
y
s-
M
on
ito
rin
g:
C
1-
M
T
R
P
Y
M
P
L

be
consider
ed
Notificat
ion:
<PTP
Type>
broken
for
account
<Accou
nt
Numbe
r>. Days
since
plan
broken
<Days
Since
PTP
Broke
n>. Set
Display
Date of
the case
to
current
busines
s date.
Values

22 Algorithm Extensions | 567

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.bankruptcy.Bankruptcy
MonitorAssetLiquidation

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.bankruptcy.Bankruptcy
MonitorAssetLiquidation_Impl

N
oti
fy
th
e
B
an
kr
up
tc
y
S
pe
ci
ali
st
if
th
e
Li
qu
id
ati
on
re
ac
he

Notify
the
Bankrup
tcy
Speciali
st if the
Liquidati
on
reaches
a
specific
status. If
for any
of the
associat
ed
account
if the
liquidati
on case
reaches
a
specific
status
than
create a

568 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
ri
t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t

getNe
xtTran
sCond
ition()

s
a
sp
ec
ifi
c
st
at
u
s-
M
on
ito
rin
g:
C
1-
M
N
T
R
A
S
L
Q
D

notificati
on for
the
Bankrup
tcy
Speciali
st.
Notificat
ion:
"Liquidat
ion for
Account
<Accou
nt
Numbe
r>;
Collater
al
<Collate
ral
Code>
has
reached
status
<Case
Status>
Set
Display
Date of
the

22 Algorithm Extensions | 569

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

C
a
s
e
i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t

570 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

a
s
e
t
o
it
a
s
F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

CaseTyp
eAutoTra
nsitionAl
gorithmS
pot

T
h

void
setCa
se
(ToDo
Case

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.bankruptcy.Bankruptcy
MonitorHearingDate

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.bankruptcy.Bankruptcy
MonitorHearingDate_Impl

N
oti
fy
th

If for any
of the
associat
ed

22 Algorithm Extensions | 571

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
s
a
l
g
o
ri
t
h
m

t
y
p
e
i
s
u
s
e
d
t
o
p
e
r
f
o

toDoC
ase);
Bool
getSh
ouldA
utoTra
nsition
();
Case
Status
getNe
xtCas
eStatu
s();
String
getNe
xtTran
sCond
ition();

e
B
an
kr
up
tc
y
S
pe
ci
ali
st
on
R
F
S
H
ea
rin
g
D
at
e-
M
on
ito
rin
g:
C
1-

account
on the
case if
the RFS
Hearing
Date is
reached
Create
Notificat
ion:
"Capture
details
for RFS
Hearing
for
Account
<Accou
nt
Numbe
r> When
Busines
s date =
Hearing
Date + 1
Set
Display
Date of
the case
to
current

572 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

a
u
t
o
t
r
a
n
s
it
i
o
n
p
r
o
c
e
s
s
i
n
g
f
o
r
a
C
a

ation
Date:
POSTIN
G
DATE,
SYSTE
MDATE

22 Algorithm Extensions | 573

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

ResultTy
pePostPr
ocessing
Algorithm
Spot

T
h
i
s
A
l
g
o
ri
t
h
m

s
p
o
t
d
e
c
i
d
e
s

void
setAct
ionEnt
ity
(String
action
Entit
y);
void
setAct
ionSo
urceId
(String
action
Sourc
eId);
void
setAct
ionSo
urceSt
atusC
ode
(String
action
Sourc
eStatu

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.bankruptcy.DetermineB
ankruptcyTreatment

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.bankruptcy.DetermineB
ankruptcyTreatment_Impl

D
et
er
mi
ne
in
w
hi
ch
st
at
us
th
e
ca
se
sh
ou
ld
pr
oc
ee
d
fo
r
B

Bankrup
tcy
Chapter
Field
should
be
passed
as a
Filing
Informat
ion
Chapter
(FC) or
Convert
ed to
Chapter
(CC) as
an input
paramet
er If
Bankrup
tcy
Chapter
=
Chapter

574 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
n
w
h
i
c
h
s
t
a
t
u
s
t
r
a
n
s
it
i
o
n
h
a
s
t
o
b

sCd);
void
setAct
ionId
(String
action
Id);
void
setAct
ionTy
pe
(Actio
nType
action
Type);
void
setRe
sultTy
pe
(Resul
tType
result
Type);
boolea
n
getIsP
roces
singC
omple
te();

an
kr
up
tc
y
Tr
ea
t
m
en
t-
P
os
t
Pr
oc
es
si
ng
C
1-
D
T
M
B
K
T
R
T
M

7 Then
Transitio
n to
Manage
Chapter
7
Bankrup
tcy
Status If
Bankrup
tcy
Chapter
=
Chapter
13 Then
Transitio
n to
Manage
Chapter
13
Bankrup
tcy
Status If
Bankrup
tcy
Chapter
=
Chapter
other

22 Algorithm Extensions | 575

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

f
r
e
s
u
l
t
.

ResultTy
pePostPr
ocessing
Algorithm
Spot

T
h
i
s
A
l
g
o
ri
t
h
m

s
p
o
t

void
setAct
ionEnt
ity
(String
action
Entit
y);
void
setAct
ionSo
urceId
(String
action
Sourc
eId);
void
setAct
ionSo

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.bankruptcy.ValidateBan
kruptcyCaseData

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.bankruptcy.ValidateBan
kruptcyCaseData_Impl

V
ali
da
te
if
ap
pr
op
ria
te
C
as
e
D
et
ail
s
ha
ve

Validate
if the
Dynami
c Panel

576 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

d
e
c
i
d
e
s
i
n
w
h
i
c
h
s
t
a
t
u
s
t
r
a
n
s
it
i
o

urceSt
atusC
ode
(String
action
Sourc
eStatu
sCd);
void
setAct
ionId
(String
action
Id);
void
setAct
ionTy
pe
(Actio
nType
action
Type);
void
setRe
sultTy
pe
(Resul
tType
result
Type);

be
en
en
te
re
d
by
th
e
us
e
r-
P
os
t
Pr
oc
es
si
ng
C
1-
V
L
D
B
C
D
A
T

Fields
mention
ed for
the
correspo
nding
Dynami
c panels
have
some
values
for the
case.If
yes the

22 Algorithm Extensions | 577

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
d
o
n
p
r
o
c
e
s
s
i
n
g
o
f
r
e
s
u
l
t
.

y. If no
system
should
throw an
error
messag
e for the
first
blank
field that
it will
encount
er. Error
Messag
e:"<Fiel

578 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

espondi
ng Panel
Fields:
ENTIT
Y_
NAME,
PHONE
,EMAIL,
FAX_
NUMBE
R,CON
TACT_
POINT_
NAME,
CONTA
CT_
POINT_
PHON

22 Algorithm Extensions | 579

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

rrespond
ing
Panel
Fields:
DATE_
OF_
BNKP
T_
CASE_
FILE,B
NKPT_
CASE_
NUM,C
OURT,
CHAPT
ER
Panel
Name:b
ankruptc
yConfir
mPlanIn
formatio
nPanel
Corresp
onding
Panel

580 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

Business
ObjectEn
terStatus
Algorithm
Spot

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.bankruptcy.Bankruptcy
NotifyPaymentPlanKept

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.bankruptcy.Bankruptcy
NotifyPaymentPlanKept_Impl

N
oti
fy
B
an
kr
up
tc
y
S
pe
ci
ali
st
w
he
n
a
P
ay
m
en
t
Pl
an
st
at

Create
Notificat
ion
Notificat
ion:
<PTP
Type>
Kept for
account
<Accou
nt
Numbe
r>. Set
Display
Date of
the case
to
current
busines
s date.

22 Algorithm Extensions | 581

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

us
be
co
m
es
K
ep
t-
P
os
t
Pr
oc
es
si
ng
C
1-
N
T
P
Y
M
P
L
N
K

582 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

ToDoTyp
eToDoPo
stProces
sAlgorith
mSpot

T
h
i
s
A
l
g
o
ri
t
h
m

s
p
o
t
i
s
u
s
e
d
f
o
r
n

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.bankruptcy.Bankruptcy
NotifyTaskCompletion

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.bankruptcy.Bankruptcy
NotifyTaskCompletion_Impl

N
oti
fy
B
an
kr
up
tc
y
S
pe
ci
ali
st
of
T
as
k
C
o
m
pl
eti
o
n-
P
os
t
Pr

Create
Notificat
ion
Notificat
ion:
<Task
Id> -
<Task
Name>
complet
e for
<Accou
nt
Numbe
r>. Set
Display
Date of
the case
to
current
busines
s date.
Notificat
ion
should
be
created
on the
latest
case

22 Algorithm Extensions | 583

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
ti
f
y
i
n
g
t
a
s
k
c
o
m
p
l
e
ti
o
n
a
n
d
a
l
s
o
f
o

oc
es
si
ng
C
1-
N
T
F
T
S
K
C
M
P

associat
ed on
the
Account

584 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

ToDoTyp
eToDoPo
stProces
sAlgorith
mSpot

T
h
i
s
A
l
g
o
ri
t
h
m

s
p
o
t
i
s
u
s
e
d
f
o

com.splwg.ccb.domain.collect
ion.vendor.VendorManagemen
tAutomaticTaskAllocation

com.splwg.ccb.domain.collecti
on.vendor.VendorManagement
AutomaticTaskAllocation_Impl

V
en
do
r
M
an
ag
e
m
en
t -
A
ut
o
m
ati
c
Al
lo
ca
tio
n
of
ta
sk
s

On
creation
of task
check if
task is
already
allocate
d to a
member.
If Yes no
action
required.
If No
allocate
the case
to the
member
with
lowest
number
of tasks
of that
task
type in
the
queue.

22 Algorithm Extensions | 585

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

r
n
o
ti
f
y
i
n
g
t
a
s
k
c
o
m
p
l
e
ti
o
n
a
n
d
a
l
s
o

to
V
en
do
rs
-
T
O
D
O
T
yp
e -
P
os
t
Pr
oc
es
si
ng
C
1-
T
S
K
V
N
D
R

586 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.financialHardship.Hard
shipAssociation

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.financialHardship.Hards
hipAssociation_Impl

H
ar
ds
hi
p -
A
ss
oc
iat
e
A
cc
ou
nt
s
of
M
ai
n
C
us
to
m
er
-
E
nt

This
algorith
m
associat
es the
Party on
whom
the
hardship
case is
created.

22 Algorithm Extensions | 587

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
ri
t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t

getNe
xtTran
sCond
ition()

er
Pr
oc
es
si
ng
C
1-
H
A
R
A
S
O
P
N
D

588 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

C
a
s
e
i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t

22 Algorithm Extensions | 589

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

a
s
e
t
o
it
a
s
F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

CaseTyp
eAutoTra
nsitionAl
gorithmS
pot

T
h

void
setCa
se
(ToDo
Case

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.bankruptcy.Bankruptcy
MonitorHearingDate

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.bankruptcy.Bankruptcy
MonitorHearingDate_Impl

590 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
s
a
l
g
o
ri
t
h
m

t
y
p
e
i
s
u
s
e
d
t
o
p
e
r
f
o

toDoC
ase);
Bool
getSh
ouldA
utoTra
nsition
();
Case
Status
getNe
xtCas
eStatu
s();
String
getNe
xtTran
sCond
ition();

22 Algorithm Extensions | 591

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

a
u
t
o
t
r
a
n
s
it
i
o
n
p
r
o
c
e
s
s
i
n
g
f
o
r
a
C
a

592 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eAutoTra
nsitionAl
gorithmS
pot

T
h
i
s
a
l
g
o
ri
t
h
m

t
y
p
e
i
s
u
s
e
d
t
o
p

void
setCa
se
(ToDo
Case
toDoC
ase);
Bool
getSh
ouldA
utoTra
nsition
();
Case
Status
getNe
xtCas
eStatu
s();
String
getNe
xtTran
sCond
ition();

com.splwg.ccb.domain.collect
ion.scra.algorithm.ActiveServi
ceAlgorithm

com.splwg.ccb.domain.collecti
on.scra.algorithm.ActiveServic
eAlgorithm_Impl

C
1-
A
C
T
M
E
M
C
H
K

This
algorith
m will
Transit
the case
to
'Suspen
d Status'
if the
custome
r is in
Active
Service
or
depende
nt of a
person
in Active
Service.
Validate
against
all
Financia
l Owners
paramet
er will
decide if

22 Algorithm Extensions | 593

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
r
f
o
r
m

a
u
t
o
t
r
a
n
s
it
i
o
n
p
r
o
c
e
s
s
i
n
g

check
has to
be done
for main
custome
r or all
financial
owners.
If
Validate
against
all
Financia
l Owners
paramet
er value
is Y,
algorith
m will
check
active
service
member
against
all
financial
owners.

594 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

GenericE
ventHost
UpdateAl
gorithmS
pot

T
h
i
s
i
s
g
e
n
e
ri
c
a
l
g
o
ri
t
h
m

s
p
o

void
setPer
son
(Perso
n
perso
n);
void
setTo
DoCa
se
(ToDo
Case
toDoC
ase);
void
setAc
count
(Acco
unt
accou
nt);

com.splwg.ccb.domain.collect
ion.loan.UpdateDisputeFlagAl
gorithm

com.splwg.ccb.domain.collecti
on.loan.UpdateDisputeFlagAlg
orithm_Impl

G
en
eri
c
Al
go
rit
h
m
to
up
da
te
ho
st
fla
g
th
ro
ug
h
ev
en
t
m
an
ag
er

Generic
Algorith
m to
update
host flag
through
event
manager

22 Algorithm Extensions | 595

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

t
w
h
i
c
h
c
a
n
b
e
u
s
e
d
t
o
g
e
n
e
r
a
t
e
G
e
n

C
od
e -
C
1-
E
V
T
H
S
T
U
P
D

596 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

t
h
m
S
p
o
t

ResultTy
pePostPr
ocessing
Algorithm
Spot

T
h
i
s
A
l
g
o
ri
t
h
m

s
p
o
t
d

void
setAct
ionEnt
ity
(String
action
Entit
y);
void
setAct
ionSo
urceId
(String
action
Sourc
eId);
void
setAct
ionSo
urceSt

com.splwg.ccb.domain.collect
ion.algorithms.ScheduleCallP
ostProcessingAlgorithm

com.splwg.ccb.domain.collecti
on.algorithms.ScheduleCallPo
stProcessingAlgorithm_Impl

C
od
e -
C
1-
S
C
H
C
A
LL

This
algorith
m is
used to
fulfil
request
by
custome
r to
collector
for
calling at
specific
time. -
The Call
Back
Timewill
get
saved

22 Algorithm Extensions | 597

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
c
i
d
e
s
i
n
w
h
i
c
h
s
t
a
t
u
s
t
r
a
n
s
it
i
o
n

atusC
ode
(String
action
Sourc
eStatu
sCd);
void
setAct
ionId
(String
action
Id);
void
setAct
ionTy
pe
(Actio
nType
action
Type);
void
setRe
sultTy
pe
(Resul
tType
result
Type);
boolea

as the
Next
Action
Time on
the
case. If
'NA' is
selected
the
value
will go
as
blank. -
If the
Next
Action
Date is
same as
Current
date and
Online
Dialer
Inclusio
n = 'Yes'
then
add/upd
ate the
record in
the

598 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
n
p
r
o
c
e
s
s
i
n
g
o
f
r
e
s
u
l
t
.

CaseTyp
eEnterSt
atusValid
ationAlgo
rithmSpot

T
h

void
setCa
se
(ToDo
Case
toDoC
ase);
void

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.algorithms.
ValidateDemandLetterandAcc
elerationLetter

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.algorithms.
ValidateDemandLetterandAcc
elerationLetter_Impl

C
od
e -
C
1-
V
A
LI

If DL
Templat
e Code
has

22 Algorithm Extensions | 599

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t
h
m

s
p
o
t

setOri
ginalC
aseSt
atus
(Case
Status
caseO
riginal
Statu
s);

D
D
L
A
L

been
mention
ed
validate
if
Demand
Letter
has
been
sent in
last X
days. If
AL
Templat
e Code
has
been
mention
ed
validate
if
Acceler
ation
Letter
has
been
sent in
last X

600 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

t
o
e
x
e
c
u
t
e
t
h
e
v
a
li
d
a
ti
o
n
l
o
g
i
c
b
e

pecified
just
check if
the
letters
have
been
sent on
the
account.
Checks
will be
done for
all
associat
ed
account
s unless
'Only
Primary
Account
= Yes' in
which
case the
check
will be
only on
primary
associat
ed

22 Algorithm Extensions | 601

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

t
u
s
.

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.algorithms.
ActiveMilitaryServiceCheckon
AssociatedCustomers

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.algorithms.
ActiveMilitaryServiceCheckon
AssociatedCustomers_Impl

C
od
e -
C
1-
B
L
O
C
K
R
E
P
O

If any of
the
custome
rs
associat
ed with
the
reposse
ssion
case
satisfy
below
criteria
block
reposse
ssion
initiatio
n. The
custome
r is a
Service
Member
and The

602 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e
b
u
s
i
n
e
s

eStatu
s()
String
getNe
xtTran
sCond
ition()

custome
r has not
waived
his
SCRA
Protecti
on and
(The
custome
r is in
Active
Service
or the
number
of days
since
the end
date of
custome
rs last
active
service
< X days
or the
service
member
is
missing
in

22 Algorithm Extensions | 603

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
n
t
o
s
p
e
c
if
i
c
s
t
a
t
u
s
.

CaseTyp
eAutoTra
nsitionAl
gorithmS
pot

T
h
i
s
a
l

void
setCa
se
(ToDo
Case
toDoC
ase);
Bool
getSh
ouldA

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.algorithms.
MonitorDemandLetterandAcce
lerationLetterExpiry

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.algorithms.
MonitorDemandLetterandAccel
erationLetterExpiry_Impl

C
od
e -
C
1-
M
N
T
R
D

If DL
Templat
e Code
has
been
mention

604 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

g
o
ri
t
h
m

t
y
p
e
i
s
u
s
e
d
t
o
p
e
r
f
o
r
m

a

utoTra
nsition
();
Case
Status
getNe
xtCas
eStatu
s();
String
getNe
xtTran
sCond
ition();

L
A
L

ed
validate
if
Demand
letter
has
been
sent and
current
date >
Demand
Letter
Expiry
Date. If
AL
Templat
e Code
has
been
mention
ed
validate
if
Acceler
ation
letter
has
been

22 Algorithm Extensions | 605

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

n
s
it
i
o
n
p
r
o
c
e
s
s
i
n
g
f
o
r
a
C
a
s
e
.

tion
letter
Expiry
Date. If
'Only
Primary
Account'
= Yes
then the
above
checks
need to
be done
only on
Primary
account
else the
checks
should
be done
on all
associat
ed
account
s. If both
are true
transitio
n the
case to
'Reposs

606 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t
h
m

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.algorithms.
AutoApprovalCheckforReposs
ession

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.algorithms.
AutoApprovalCheckforReposs
ession_Impl

C
od
e -
C
1-
R
E
P
O
A
P
R
V

If the
Auto-
Approval
Rule
returns
true the
case will
be
transitio
ned to
the
Approve
d status.
If the
Auto
Approval
Rule
returns
false the
case will
remain
in the
Reposs
ession

22 Algorithm Extensions | 607

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e
b
u
s
i
n
e
s
s
l
o

getNe
xtTran
sCond
ition()

Referred
Status
and a
Task is
created
for the
given
Task
Type
and is
assigne
d to the
supervis
or of the
queue.
Below
facts are
used :
Collater
al Type
Collater
al
Categor
y
Reposs
ession
Reason
Outstan

608 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

p
e
c
if
i
c
s
t
a
t
u
s
.

eral

ResultTy
pePostPr
ocessing
Algorithm
Spot

T
h
i
s
A
l
g
o
ri
t
h

void
setAct
ionEnt
ity
(String
action
Entit
y);
void
setAct
ionSo
urceId
(String
action

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.algorithms.
RepossessionApprovalResult
PostProcessingAlgorithm

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.algorithms.
RepossessionApprovalResult
PostProcessingAlgorithm_Impl

C
od
e -
C
1-
R
A
P
R
V
R
S
L
T

Transitio
n the
case to
given
Case
Status if
Case
Status is
configur
ed.
Close
the
Approval
Task
Type

22 Algorithm Extensions | 609

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

m

s
p
o
t
d
e
c
i
d
e
s
i
n
w
h
i
c
h
s
t
a
t
u
s
t

Sourc
eId);
void
setAct
ionSo
urceSt
atusC
ode
(String
action
Sourc
eStatu
sCd);
void
setAct
ionId
(String
action
Id);
void
setAct
ionTy
pe
(Actio
nType
action
Type);
void
setRe

present
on the
case if
approval
task
type is
configur
ed.
Copy
the
commen
ts in the
result to
the
Approve
r
remarks
field

610 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

t
o
b
e
m
a
d
e
b
a
s
e
d
o
n
p
r
o
c
e
s
s
i
n
g
o
f
r
e

22 Algorithm Extensions | 611

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t
h
m

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.algorithms.
AutomaticSendingofRedempti
onLetters

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.algorithms.
AutomaticSendingofRedempti
onLetters_Impl

C
od
e -
C
1-
R
E
D
E
M
P
L
T
R

For each
of the
account
s
associat
ed to the
reposse
ssion
case
send the
Redemp
tion
letter
(create
custome
r contact
of given
template
code) If
'Only
Primary
Account
= Yes'
then
send
letter
only on
the

612 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e
b
u
s
i
n
e
s
s
l
o

getNe
xtTran
sCond
ition()

primary
account.

22 Algorithm Extensions | 613

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

p
e
c
if
i
c
s
t
a
t
u
s
.

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.algorithms.
RepossessionAssignmentAler
t

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.algorithms.
RepossessionAssignmentAler
t_Impl

C
od
e -
C
1-
R
E
P
O
A
S
A
L

Generat
e and
send the
email to
the
email id
of the
contact
person
associat
ed to the
service
type
mention
ed in the

614 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

f
t
h
e
a
l
g
o
ri
t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t

tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String
getNe
xtTran
sCond
ition()

paramet
er. Email
of
specifie
d
template
code will
be sent.
The
algorith
m will
generate
the
contact
as well
as
initiate
contact
processi
ng

22 Algorithm Extensions | 615

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

s
l
o
g
i
c
w
h
e
n
C
a
s
e
i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if

616 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

LetterTe
mplateLe
tterExtra
ctCollecti
onAlgorit
hmSpot

E
x
t
r
a
c
t
a
ll
t
h
e
C
o
ll
a
t
e
r

void
setCu
stome
rCont
act
(Cust
omer
Conta
ct
custo
merC
ontac
t);
Letter
Templ
ateInf
oBean
getLet
terTe
mplat
eInfo
();
Repor
tDefini
tion
getRe
portD
efinitio
n();

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.algorithms.
ExtractRepossessionAssignm
entAlgorithm

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.algorithms.
ExtractRepossessionAssignm
entAlgorithm_Impl

C
od
e -
C
1-
R
E
P
E
M
T
E
M
P

Extract
all the
Collater
al,
Account
and
Custom
er
Informat
ion and
send it
to Alert
Module.
The
contact
person
details
of the
Vendor
will also
be sent
to the
Alert
Module
to
generate
the alert.

22 Algorithm Extensions | 617

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

a
l,
A
c
c
o
u
n
t
a
n
d
C
u
s
t
o
m
e
r
I
n

618 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

A
l
e
r
t
M
o
d
u
l
e
.
T
h
e
c
o
n
t
a
c
t
p
e

22 Algorithm Extensions | 619

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
t
h
e
a
l
e
r
t
.

GenericA
lgorithmS
pot

T
h
i
s
i
s
g
e
n
e
ri
c
a
l
g

void
setPer
son
(Perso
n
perso
n);
void
setTo
DoCa
se
(ToDo
Case
toDoC
ase);
void
setAc
count
(Acco

com.splwg.ccb.domain.collect
ion.dmdc.VerifyDMDCDetails
Algorithm

com.splwg.ccb.domain.collecti
on.dmdc.VerifyDMDCDetailsA
lgorithm_Impl

C
od
e -
C
1-
D
M
D
C
R
E
Q

This
algorith
m is
used to
check
whether
SCRA
verificati
on
request
should
call to
DMDC
or not
based
on
number
of days
passed.

620 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
ri
t
h
m

s
p
o
t
w
h
i
c
h
c
a
n
b
e
u
s
e
d
t
o
g
e

unt
accou
nt);
Bool
getD
MDC
Verific
ationR
equire
d();

22 Algorithm Extensions | 621

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

ri
t
h
m

o
f
t
y
p
e
A
l
g
o
ri
t
h
m
S
p
o
t

622 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t
h
m

s
p

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String
getNe
xtTran

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.ChkBkpcy
OnAssociateCust

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.ChkBkpcyO
nAssociateCust_Impl

C
od
e -
C
1-
C
H
K
B
K
P
T
C
Y

If
Reposs
ession
Reason
<>
Bankrup
tcy For
each
custome
r
associat
ed with
the case
Check if
the
Bankrup
tcy_
Switch =
Y. If yes
Case
Creation
will be
rolled
back
and
below
error
messag
e will be

22 Algorithm Extensions | 623

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e
b
u
s
i
n
e
s
s
l
o
g
i

sCond
ition()

displaye
d. "One
or more
of the
collatera
l owners
have
claimed
Bankrup
tcy.
Reposs
ession
process
should
be
initiated
from
Bankrup
tcy
process"

624 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

fi
c
s
t
a
t
u
s
.

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.AssociateC
ustAssRepo

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.AssociateC
ustAssRepo_Impl

C
od
e -
C
1-
A
S
S
O
C
U
S
T

Associa
te all
financial
owners
on the
associat
ed
account
s to the
Reposs
ession
case.

22 Algorithm Extensions | 625

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

a
l
g
o
ri
t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e

nsition
()
String
getNe
xtCas
eStatu
s()
String
getNe
xtTran
sCond
ition()

626 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

C
a
s
e
i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t
a
t
u
s
.

22 Algorithm Extensions | 627

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusValid
ationAlgo
rithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t
h
m

s
p

void
setCa
se
(ToDo
Case
toDoC
ase);
void
setOri
ginalC
aseSt
atus
(Case
Status
caseO
riginal
Statu
s);

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.ValidateCol
lateral

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.ValidateColl
ateral_Impl

C
od
e -
C
1-
V
A
L
D
C
O
LL

The
input
collatera
l is
associat
ed with
the
account
on which
the
reposse
ssion
case is
being
created.
The
collatera
l belongs
to the
collatera
l type
and
collatera
l
category
specifie
d in the
paramet

628 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e
v
a
li
d
a
ti
o
n
l
o
g
i

ers. If
collatera
l type
and
collatera
l
category
are not
mention
ed no
validatio
n will be
done.
The
collatera
l status
is not
'Sold'.
Date of
Sale is
blank.
There is
no
reposse
ssion
case
active
on the
collatera
l (IS_

22 Algorithm Extensions | 629

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

c
if
i
c
s
t
a
t
u
s
.

ResultTy
pePostPr
ocessing
Algorithm
Spot

T
h
i
s
A
l
g
o
ri
t
h
m

s

void
setAct
ionEnt
ity
(String
action
Entit
y);
void
setAct
ionSo
urceId
(String
action
Sourc
eId);

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.Repossessi
onTransition

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.Repossessi
onTransition_Impl

C
od
e -
C
1-
R
S
T
U
P
C
M
P
L

If
Reposs
ession
Reason
=
"Volunta
ry
Reposs
ession"
transitio
n to
'Reposs
ession
In
Progres
s -
Voluntar
y

630 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

p
o
t
d
e
c
i
d
e
s
i
n
w
h
i
c
h
s
t
a
t
u
s
t
r
a
n

void
setAct
ionSo
urceSt
atusC
ode
(String
action
Sourc
eStatu
sCd);
void
setAct
ionId
(String
action
Id);
void
setAct
ionTy
pe
(Actio
nType
action
Type);
void
setRe
sultTy
pe
(Resul

Surrend
er' else
transitio
n to
'Reposs
ession in
Progres
s"

22 Algorithm Extensions | 631

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

m
a
d
e
b
a
s
e
d
o
n
p
r
o
c
e
s
s
i
n
g
o
f
r
e
s
u
l
t

632 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

ToDoTyp
eToDoPo
stProces
sAlgorith
mSpot

void
setOld
ToDo
Entry
DTO
(ToDo
Entry_
DTO
oldDT
O);
void
setNe
wToD
oEntry
(ToDo
Entry
newT
oDoE
ntry);

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.NotifyOnTa
skCompletion

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.NotifyOnTa
skCompletion_Impl

C
od
e -
C
1-
N
O
T
R
S
T
S
K

Create
Notificat
ion
Notificat
ion:
<Task
Id> -
<Task
Name>
complet
e for
<Collate
ral
Code>
<Collate
ral
Descript
ion>.
Set
Display
Date of
the case
to
current
busines
s date.
Notificat

22 Algorithm Extensions | 633

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

ion
should
be
created
on the
case
associat
ed to the
task.
This
algorith
m can
be
attached
to any
case
level
task on
the
Reposs
ession
case to
alert the
reposse
ssion
speciali
st.

634 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eAutoTra
nsitionAl
gorithmS
pot

T
h
i
s
a
l
g
o
ri
t
h
m

t
y
p
e
i
s
u
s
e
d
t
o
p
e
r

void
setCa
se
(ToDo
Case
toDoC
ase);
Bool
getSh
ouldA
utoTra
nsition
();
Case
Status
getNe
xtCas
eStatu
s();
String
getNe
xtTran
sCond
ition();

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.MonitorFor
RedemptionProc

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.MonitorFor
RedemptionProc_Impl

W
he
n
th
e
ou
ts
ta
nd
in
g
a
m
ou
nt
of
all
th
e
as
so
ci
at
ed
ac
co
un
ts

When
the
outstand
ing
amount
of all the
associat
ed
account
s
become
s zero
move
the case
to
Closed
Status.

22 Algorithm Extensions | 635

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

f
o
r
m

a
u
t
o
t
r
a
n
s
it
i
o
n
p
r
o
c
e
s
s
i
n
g
f
o

be
co
m
es
ze
ro
m
ov
e
th
e
ca
se
to
Cl
os
ed
St
at
u
s.
C
od
e -
C
1-
R
E
D
E

636 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eAutoTra
nsitionAl
gorithmS
pot

T
h
i
s
a
l
g
o
ri
t
h
m

t
y
p
e
i
s
u
s
e
d
t
o
p

void
setCa
se
(ToDo
Case
toDoC
ase);
Bool
getSh
ouldA
utoTra
nsition
();
Case
Status
getNe
xtCas
eStatu
s();
String
getNe
xtTran
sCond
ition();

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.MonitorForL
iquidationSetUpComplete

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.MonitorForL
iquidationSetUpComplete_
Impl

W
he
n
R
ep
o
Ti
tle
R
ec
ei
ve
d
D
at
e
an
d
V
eh
icl
e
at
S
al
e

When
Repo
Title
Receive
d Date
and
Vehicle
at Sale
Location
Date is
available
the case
is
moved
to the
next
status.

22 Algorithm Extensions | 637

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
r
f
o
r
m

a
u
t
o
t
r
a
n
s
it
i
o
n
p
r
o
c
e
s
s
i
n
g

Lo
ca
tio
n
D
at
e
is
av
ail
ab
le
th
e
ca
se
is
m
ov
ed
to
th
e
ne
xt
st
at
u
s.

638 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t
h
m

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.AutoTaskC
reationForVendor

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.AutoTaskCr
eationForVendor_Impl

C
od
e -
C
1-
A
U
T
O
T
A
S
K
C

Create a
Task of
given
Task
Type
and
assign it
to the
queue
code
specifie
d in the
paramet
er.
Addition
ally
assign
the task
to the
vendor
defined
against
the
service
type for
the

22 Algorithm Extensions | 639

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e
b
u
s
i
n
e
s
s
l
o

getNe
xtTran
sCond
ition()

case. If
the
vendor
is not
allocate
d to the
Queue
code or
if there
is no
vendor
assigne
d to the
service
type in
the case
give
error
messag
e "Task
cannot
be
allocate
d for
service
type:
<Servic
e Type>.
Please
contact

640 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

p
e
c
if
i
c
s
t
a
t
u
s
.

ResultTy
pePostPr
ocessing
Algorithm
Spot

T
h
i
s
A
l
g
o
ri
t
h

void
setAct
ionEnt
ity
(String
action
Entit
y);
void
setAct
ionSo
urceId
(String
action

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.ValidateRe
poCaseData

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.ValidateRep
oCaseData_Impl

C
od
e -
C
1-
V
A
L
D
A
T
A
P
R

Validate
if the
Dynami
c Panel
Data
Element
s and
Case
Charact
eristics
mention
ed in the
paramet
ers have

22 Algorithm Extensions | 641

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

m

s
p
o
t
d
e
c
i
d
e
s
i
n
w
h
i
c
h
s
t
a
t
u
s
t

Sourc
eId);
void
setAct
ionSo
urceSt
atusC
ode
(String
action
Sourc
eStatu
sCd);
void
setAct
ionId
(String
action
Id);
void
setAct
ionTy
pe
(Actio
nType
action
Type);
void
setRe

some
values
for the
case. If
yes the
Follow
Up is
saved
success
fully and
case is
transitio
ned to
the
previous
case
status. If
no
system
should
throw an
error
messag
e for the
first
blank
field that
it will
encount
er. Error

642 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

t
o
b
e
m
a
d
e
b
a
s
e
d
o
n
p
r
o
c
e
s
s
i
n
g
o
f
r
e

22 Algorithm Extensions | 643

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eAutoTra
nsitionAl
gorithmS
pot

T
h
i
s
a
l
g
o
ri
t
h
m

t
y
p
e
i
s
u
s
e
d
t
o
p

void
setCa
se
(ToDo
Case
toDoC
ase);
Bool
getSh
ouldA
utoTra
nsition
();
Case
Status
getNe
xtCas
eStatu
s();
String
getNe
xtTran
sCond
ition();

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.MonitorRed
emptionClearDate

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.MonitorRed
emptionClearDate_Impl

W
he
n
th
e
re
de
m
pti
on
cl
ea
r
da
te
is
re
ac
he
d
tr
an
sit
io
n
th

When
the
redempti
on clear
date is
reached
transitio
n the
case to
the
Liquidati
on Setup
Status.

644 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
r
f
o
r
m

a
u
t
o
t
r
a
n
s
it
i
o
n
p
r
o
c
e
s
s
i
n
g

e
ca
se
to
th
e
Li
qu
id
ati
on
S
et
up
St
at
u
s.
C
od
e -
C
1-
R
E
D
C
L
R
D

22 Algorithm Extensions | 645

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t
h
m

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.bankruptcy.Metro2Con
sumerInformationIndicator

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.bankruptcy.Metro2Cons
umerInformationIndicator_Impl

S
et
CI
I
=
X
ba
se
d
on
C
ha
pt
er
en
te
re
d
in
Fil
in
g
In
fo
r
m

Set CII
= X
based
on
Chapter
entered
in Filing
Informat
ion for all
custome
rs
associat
ed to the
case.

646 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e
b
u
s
i
n
e
s
s
l
o

getNe
xtTran
sCond
ition()

ati
on
fo
r
all
cu
st
o
m
er
s
as
so
ci
at
ed
to
th
e
ca
s
e.
C
od
e -
C
1-
C
O
NI

22 Algorithm Extensions | 647

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

p
e
c
if
i
c
s
t
a
t
u
s
.

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.bankruptcy.Metro2Con
sumerInfoIndiChap13PostDis

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.bankruptcy.Metro2Cons
umerInfoIndiChap13PostDis_
Impl

If
an
y
as
so
ci
at
ed
se
cu
re
d

If any
associat
ed
secured
account
without
confirme
d plan on
it report
CII = Q
Else
Report
CII = G
for
Chapter
12

648 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

f
t
h
e
a
l
g
o
ri
t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t

tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String
getNe
xtTran
sCond
ition()

ac
co
un
t
wi
th
ou
t
co
nfi
r
m
ed
pl
an
on
it
re
po
rt
CI
I
=
Q
El
se
R

Report
CII = H
for
Chapter
13.

22 Algorithm Extensions | 649

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

s
l
o
g
i
c
w
h
e
n
C
a
s
e
i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if

12
R
ep
or
t
CI
I
=
H
fo
r
C
ha
pt
er
1
3.
C
od
e -
C
1-
CI
IP
S
T
DI
S

650 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g

void
setCa
se
(ToDo
Case
toDoC
ase);
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus);
Bool
getSh
ouldA
utoTra
nsition
();
String
getNe
xtCas
eStatu
s();
String

com.splwg.ccb.domain.collect
ion.tasks.algo.AutomaticTask
Creatiomn

com.splwg.ccb.domain.collecti
on.tasks.algo.AutomaticTask
Creatiomn_Impl

If
ca
se
le
ve
l
ta
sk
cr
ea
te
a
ta
sk
on
th
e
ca
se
id.
If

If case
level
task
create a
task on
the case
id. If
account
level
task
create a
task
each on
all the
account
s
associat
ed on
the
case. If
custome
r level
task
create a
task
each on
all the
custome

22 Algorithm Extensions | 651

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
ri
t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t

getNe
xtTran
sCond
ition();

ac
co
un
t
le
ve
l
ta
sk
cr
ea
te
a
ta
sk
ea
ch
on
all
th
e
ac
co
un
ts

rs
associat
ed on
the
case.

652 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

C
a
s
e
i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t

e
a
ta
sk
ea
ch
on
all
th
e
cu
st
o
m
er
s
as
so
ci
at
ed
on
th
e
ca
s
e.
C
as

22 Algorithm Extensions | 653

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

a
s
e
t
o
it
a
s
F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

654 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eExitStat
usValidat
ionAlgorit
hmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t
h
m

s
p

void
setCa
se
(ToDo
Case
toDoC
ase);
void
setPre
vious
Case
Status
(Case
Status
caseS
tatus);

com.splwg.ccb.domain.collect
ion.tasks.algo.ValidateTaskC
ompletion

com.splwg.ccb.domain.collecti
on.tasks.algo.ValidateTaskCo
mpletion_Impl

V
ali
da
te
if
gi
ve
n
ta
sk
s
ha
ve
be
en
co
m
pl
et
ed

Validate
if given
tasks
have
been
complet
ed
before
exiting
the
status.
For case
level
tasks
check if
any
open
tasks on
the case
id. For
account
level
tasks
check if
any
open
tasks on
the
account

22 Algorithm Extensions | 655

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
t
i
s
t
o
e
x
e
c
u
t
e
b
u
s
i
n
e
s
s
l
o
g
i
c
w
h

be
fo
re
ex
iti
ng
th
e
st
at
u
s.
F
or
ca
se
le
ve
l
ta
sk

s
associat
ed with
the
case.
For
custome
r level
tasks
check if
any
open
tasks on
the
custome
rs
associat
ed with
the
case.

656 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

s
p
e
c
if
i
c
s
t
a
t
u
s
.

r
ac
co
un
t
le
ve
l
ta
sk
s
ch
ec
k
if
an
y
op
en
ta
sk
s
on
th

22 Algorithm Extensions | 657

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

T
yp
e -
E
xit
V
ali
da
tio
n
C
1-
V
A
L
T
A
S
K
E
X

658 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusValid
ationAlgo
rithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t
h
m

s
p

void
setCa
se
(ToDo
Case
toDoC
ase);
void
setOri
ginalC
aseSt
atus
(Case
Status
caseO
riginal
Statu
s);

com.splwg.ccb.domain.collect
ion.tasks.algo.ValidateTaskC
ompletionClosure

com.splwg.ccb.domain.collecti
on.tasks.algo.ValidateTaskCo
mpletionClosure_Impl

V
ali
da
te
if
gi
ve
n
ta
sk
s
ha
ve
be
en
co
m
pl
et
ed
be
fo
re

Validate
if given
tasks
have
been
complet
ed
before
entering
the
status
For case
level
tasks
check if
any
open
tasks on
the case
id. For
account
level
tasks
check if
any
open
tasks on
the
account
s

22 Algorithm Extensions | 659

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e
v
a
li
d
a
ti
o
n
l
o
g
i

en
te
rin
g
th
e
st
at
us
F
or
ca
se
le
ve
l
ta
sk
s
ch
ec
k
if
an
y

associat
ed with
the
case.

660 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

c
if
i
c
s
t
a
t
u
s
.

ch
ec
k
if
an
y
op
en
ta
sk
s
on
th
e
ac
co
un
ts
as
so
ci
at
ed
wi
th
th
e
ca

22 Algorithm Extensions | 661

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g

void
setCa
se
(ToDo
Case
toDoC
ase);
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus);
Bool
getSh
ouldA
utoTra
nsition
();
String
getNe
xtCas
eStatu
s();
String

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.bankruptcy.SetDPDOut
standingAmount

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.bankruptcy.SetDPDOut
standingAmount_Impl

S
et
th
e
D
P
D
an
d
O
ut
st
an
di
ng
a
m
ou
nt
to
all
as
so
ci
at
ed

On
creation
of a
case the
algorith
m will
Set
DPD
and
Outstan
ding
amount
to all
associat
ed
account
s

662 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
ri
t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t

getNe
xtTran
sCond
ition();

ac
co
un
ts
on
en
te
rin
g
th
e
st
at
us
-
E
nt
er
St
at
us
-
C
1-
S
E
T
D
P
D

22 Algorithm Extensions | 663

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

C
a
s
e
i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t

664 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

a
s
e
t
o
it
a
s
F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

22 Algorithm Extensions | 665

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri

void
setCa
se
(ToDo
Case
toDoC
ase);
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus);
Bool
getSh
ouldA
utoTra
nsition
();
String
getNe
xtCas
eStatu
s();
String
getNe
xtTran

com.splwg.ccb.domain.collect
ion.caseType.earlyCollections
.CreditGrantorCannotLocateC
onsumer

com.splwg.ccb.domain.collecti
on.caseType.earlyCollections.
CreditGrantorCannotLocateCo
nsumer_Impl

A
ut
o
m
ati
ca
lly
se
t
fo
r
all
bo
rr
o
w
er
s
th
e
ac
co
un
t
th
e
CI

Automat
ically set
for all
borrower
s the
account
the CII
Code in
skip
tracing
status
on
entering
a case
status

666 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e

sCond
ition();

I
C
od
e
in
sk
ip
tr
ac
in
g
st
at
us
on
en
te
rin
g
a
ca
se
st
at
us
E
nt
er
Pr

22 Algorithm Extensions | 667

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t
a
t
u
s
.

668 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

ResultTy
pePostPr
ocessing
Algorithm
Spot

T
h
i
s
A
l
g
o

void
setAct
ionEnt
ity
(String
action
Entit
y);
void
setAct

com.splwg.ccb.domain.collect
ion.caseType.earlyCollections
.ConsumerNowLocated

com.splwg.ccb.domain.collecti
on.caseType.earlyCollections.
ConsumerNowLocated_Impl

T
hi
s
al
go
rit
h
m
wi
ll

This
algorith
m will
set the
given
CII
Code for
the party
id
provided
as result
characte
ristics

22 Algorithm Extensions | 669

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

ri
t
h
m

s
p
o
t
d
e
c
i
d
e
s
i
n
w
h
i
c
h
s
t
a
t

ionSo
urceId
(String
action
Sourc
eId);
void
setAct
ionSo
urceSt
atusC
ode
(String
action
Sourc
eStatu
sCd);
void
setAct
ionId
(String
action
Id);
void
setAct
ionTy
pe
(Actio
nType

se
t
th
e
gi
ve
n
CI
I
C
od
e
fo
r
th
e
pa
rt
y
id
pr
ov
id
ed
as
re
su
lt

670 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

ti
o
n
h
a
s
t
o
b
e
m
a
d
e
b
a
s
e
d
o
n
p
r
o
c
e
s
s
i
n

;
boolea
n
getIsP
roces
singC
omple
te();

lt
ty
pe
po
st
pr
oc
es
si
ng
al
go
C
1-
C
G
C
L
C

22 Algorithm Extensions | 671

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.algorithms.
Metro2AcctStatuscodeEnterPr
ocessingAlgo

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.algorithms.
Metro2AcctStatuscodeEnterPr
ocessingAlgo_Impl

M
et
ro
2
R
ep
or
tin
g -
A
cc
ou
nt
St
at
us
C
od
e
C
1-
A
S
C
R
E
P
O

This
algorith
m is
used for
Metro 2
Reportin
g -
Account
Status
Code

672 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
ri
t
h
m

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t

getNe
xtTran
sCond
ition()

22 Algorithm Extensions | 673

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

C
a
s
e
i
s
m
o
v
e
d
i
n
t
o
s
p
e
c
if
i
c
s
t

674 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

a
s
e
t
o
it
a
s
F
K

C
h
a
r
a
c
t
e
ri
s
ti
c

ResultTy
pePostPr
ocessing
Algorithm
Spot

T void
setAct
ionEnt

com.splwg.ccb.domain.collect
ion.caseType.specialisedColle
ctions.AssetRepo.algorithms.
Metro2AcctStatusCodePostLi
quidationPostProcessing

com.splwg.ccb.domain.collecti
on.caseType.specialisedColle
ctions.AssetRepo.algorithms.
Metro2AcctStatusCodePostLi
quidationPostProcessing_Impl

M
et
ro
2

This
algorith
m is
used for
Metro 2
Reportin

22 Algorithm Extensions | 675

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

h
i
s
A
l
g
o
ri
t
h
m

s
p
o
t
d
e
c
i
d
e
s
i
n
w

ity
(String
action
Entit
y);
void
setAct
ionSo
urceId
(String
action
Sourc
eId);
void
setAct
ionSo
urceSt
atusC
ode
(String
action
Sourc
eStatu
sCd);
void
setAct
ionId
(String
action

R
ep
or
tin
g -
A
cc
ou
nt
St
at
us
C
od
e
po
st
Li
qu
id
ati
on
C
1-
A
S
C
LI
Q
U

g -
Account
Status
Code
post
Liquidati
on

676 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
c
h
s
t
a
t
u
s
t
r
a
n
s
it
i
o
n
h
a
s
t
o
b
e
m
a
d

onTyp
e
(Actio
nType
action
Type);
void
setRe
sultTy
pe
(Resul
tType
result
Type);
boolea
n
getIsP
roces
singC
omple
te();

22 Algorithm Extensions | 677

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

ResultTy
pePostPr
ocessing
Algorithm
Spot

T
h
i
s
A
l
g
o
ri
t
h
m

s
p
o
t
d
e
c
i
d
e
s

void
setAct
ionEnt
ity
(String
action
Entit
y);
void
setAct
ionSo
urceId
(String
action
Sourc
eId);
void
setAct
ionSo
urceSt
atusC
ode
(String
action
Sourc
eStatu

com.splwg.ccb.domain.collect
ion.caseType.earlyCollections
.Metro2ComplianceCodePost
ProcessingAlgo

com.splwg.ccb.domain.collecti
on.caseType.earlyCollections.
Metro2ComplianceCodePostP
rocessingAlgo_Impl

M
et
ro
2
R
ep
or
tin
g -
C
o
m
pli
an
ce
co
nd
iti
on
co
de
C
1-
C
O
M
C
O

This
algorith
m is
used for
Metro 2
Reportin
g -
Complia
nce
conditio
n code

678 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
n
w
h
i
c
h
s
t
a
t
u
s
t
r
a
n
s
it
i
o
n
h
a
s
t
o
b

sCd);
void
setAct
ionId
(String
action
Id);
void
setAct
ionTy
pe
(Actio
nType
action
Type);
void
setRe
sultTy
pe
(Resul
tType
result
Type);
boolea
n
getIsP
roces
singC
omple
te();

D
E

22 Algorithm Extensions | 679

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

f
r
e
s
u
l
t
.

CaseTyp
eAutoTra
nsitionAl
gorithmS
pot

T
h
i
s
a
l
g
o
ri
t
h
m

t
y
p
e
i

void
setCa
se
(ToDo
Case
toDoC
ase);
Bool
getSh
ouldA
utoTra
nsition
();
Case
Status
getNe
xtCas
eStatu
s();
String
getNe

com.splwg.ccb.domain.collect
ion.caseType.earlyCollections
.UpdateDisputeMonitor

com.splwg.ccb.domain.collecti
on.caseType.earlyCollections.
UpdateDisputeMonitor_Impl

M
on
ito
rin
g
Al
go
F
or
Di
sp
ut
e
R
es
ol
ve
d
C
1-
DI

This
algorith
m is a
Monitori
ng Algo
For
Dispute
Resolve
d.Used
for
updating
Dispute
Flag to
'N'

680 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

s
u
s
e
d
t
o
p
e
r
f
o
r
m

a
u
t
o
t
r
a
n
s
it
i
o
n
p

xtTran
sCond
ition();

S
M
O
N

22 Algorithm Extensions | 681

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

ResultTy
pePostPr
ocessing
Algorithm
Spot

T
h
i
s
A
l
g
o
ri
t
h
m

s
p
o
t
d
e
c
i
d
e
s

void
setAct
ionEnt
ity
(String
action
Entit
y);
void
setAct
ionSo
urceId
(String
action
Sourc
eId);
void
setAct
ionSo
urceSt
atusC
ode
(String
action
Sourc
eStatu

com.splwg.ccb.domain.collect
ion.caseType.earlyCollections
.CaseCreationonFollowupPost
ProcessingAlgo

com.splwg.ccb.domain.collecti
on.caseType.earlyCollections.
CaseCreationonFollowupPost
ProcessingAlgo_Impl

Cr
ea
te
R
eq
uir
ed
C
as
e
on
F
oll
o
w
U
p
R
es
ult
P
os
t
pr
oc
es
si

Create
Require
d Case
on
Follow
Up If
Account
Level
Case
Type
creates
case on
account,
If
Custom
er level
Case
Type
creates
case on
themain
custome
r of the
account.
Queue
to which
the case
should

682 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
n
w
h
i
c
h
s
t
a
t
u
s
t
r
a
n
s
it
i
o
n
h
a
s
t
o
b

sCd);
void
setAct
ionId
(String
action
Id);
void
setAct
ionTy
pe
(Actio
nType
action
Type);
void
setRe
sultTy
pe
(Resul
tType
result
Type);
boolea
n
getIsP
roces
singC
omple
te();

ng
Al
go
rit
h
m
C
1-
C
R
E
T
C
S
F
L

be
allocate
d if
provided
else the
case
should
remain
unalloca
ted with
Re-
Allocatio
n Switch
as Y

22 Algorithm Extensions | 683

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

f
r
e
s
u
l
t
.

ResultTy
pePostPr
ocessing
Algorithm
Spot

T
h
i
s
A
l
g
o
ri
t
h
m

s
p
o
t

void
setAct
ionEnt
ity
(String
action
Entit
y);
void
setAct
ionSo
urceId
(String
action
Sourc
eId);
void
setAct
ionSo

com.splwg.ccb.domain.collect
ion.caseType.earlyCollections
.CaseTransitionandTraskCrea
tionPostProcessingAlgo

com.splwg.ccb.domain.collecti
on.caseType.earlyCollections.
CaseTransitionandTraskCreati
onPostProcessingAlgo_Impl

G
en
eri
c
R
es
ult
P
os
t
Pr
oc
es
si
ng
Al
go
rit

Generic
Result
Post

684 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

d
e
c
i
d
e
s
i
n
w
h
i
c
h
s
t
a
t
u
s
t
r
a
n
s
it
i
o

urceSt
atusC
ode
(String
action
Sourc
eStatu
sCd);
void
setAct
ionId
(String
action
Id);
void
setAct
ionTy
pe
(Actio
nType
action
Type);
void
setRe
sultTy
pe
(Resul
tType
result
Type);

h
m
fo
r
C
as
e
Tr
an
sit
io
n
an
d
T
as
k
Cr
ea
tio
n
R
es
ult
P
os
t
pr
oc

Process
ing
Algorith
m for
Case
Transitio
n and
Task
Creation
Transitio
n the
case to
given

22 Algorithm Extensions | 685

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
d
o
n
p
r
o
c
e
s
s
i
n
g
o
f
r
e
s
u
l
t
.

Status is
configur
ed and
the
current
status is
present
in one of
the Valid
Current
Statuse
s.
Display
an error

686 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

tatus. -
Create
Task of
given
Task
Type
and
assign it
to the
give
Task
Queue if
Task
Type is
configur
ed. -
Map the

22 Algorithm Extensions | 687

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

on the
case If
Task For
=
Custom
er
Create
Task on
the
primary
associat
ed
Custom
er of the
case If
Task For
= Case
Create
Task on
the case
If Task
For =

688 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t
h
m

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String

com.splwg.ccb.domain.collect
ion.caseType.earlyCollections
.CopyCharacteristicsOnCase
Create

com.splwg.ccb.domain.collecti
on.caseType.earlyCollections.
CopyCharacteristicsOnCaseC
reate_Impl

C
op
y
C
as
e
C
ha
ra
ct
eri
sti
cs
Al
go
rit
h
m
C
as
e
T
yp
e
E
nt
er

Copy
Charact
eristics
Algorith
m to
copy the
Charact
eristics
of
recently
closed
case of
a
particula
r Case
Categor
y to
newly
created
Case of
the
same
Case
Categor
y, when
"CONT
ACT_
ALT_

22 Algorithm Extensions | 689

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e
b
u
s
i
n
e
s
s
l
o

getNe
xtTran
sCond
ition()

St
at
us
Al
go
rit
h
m
C
1-
C
O
P
Y
C
H
A
R

SW" in
CI_
ACCT_
EXTN
table is
set to
"Y".

690 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

p
e
c
if
i
c
s
t
a
t
u
s
.

CaseTyp
eAutoTra
nsitionAl
gorithmS
pot

T
h
i
s
a
l
g
o
ri
t
h
m

void
setCa
se
(ToDo
Case
toDoC
ase);
Bool
getSh
ouldA
utoTra
nsition
();
Case
Status
getNe

com.splwg.ccb.domain.collect
ion.caseType.earlyCollections
.DetermineContactIntensity

com.splwg.ccb.domain.collecti
on.caseType.earlyCollections.
DetermineContactIntensity_
Impl

D
et
er
mi
ne
C
on
ta
ct
In
te
ns
ity
an

"Determ
ine
Contact
Intensity
and
Contact
Intensity
Review
Date: - If
case is
not on
Hold. -
And
Busines

22 Algorithm Extensions | 691

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

t
y
p
e
i
s
u
s
e
d
t
o
p
e
r
f
o
r
m

a
u
t
o
t
r
a
n
s

xtCas
eStatu
s();
String
getNe
xtTran
sCond
ition();

d
C
on
ta
ct
In
te
ns
ity
R
ev
ie
w
D
at
e
C
as
e
T
yp
e
A
ut
o
Tr
an
sit
io
n

s Date
>=
Contact
Intensity
Review
Date or
Contact
Intensity
Review
Date is
Blank. -
Call
Rule
Specifie
d in the
paramet
er. - Set
Contact
Intensity
and
Contact
Intensity
Review
Date
Validatio
n Date
Can be
POSTIN
GDATE
or

692 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

g
f
o
r
a
C
a
s
e
.

ResultTy
pePostPr
ocessing
Algorithm
Spot

T
h
i
s
A
l
g
o
ri
t
h
m

s
p

void
setAct
ionEnt
ity
(String
action
Entit
y);
void
setAct
ionSo
urceId
(String
action
Sourc
eId);
void

com.splwg.ccb.domain.collect
ion.caseType.earlyCollections
.HoldCasePostProcessingAlg
o

com.splwg.ccb.domain.collecti
on.caseType.earlyCollections.
HoldCasePostProcessingAlg
o_Impl

H
ol
d
C
as
e
fo

Hold
Case for
Days as
provided
in
Charact
eristic
Type
provided
in Hold
Period or
if that is
blank
Hold
Period
should
be

22 Algorithm Extensions | 693

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
t
d
e
c
i
d
e
s
i
n
w
h
i
c
h
s
t
a
t
u
s
t
r
a
n
s

setAct
ionSo
urceSt
atusC
ode
(String
action
Sourc
eStatu
sCd);
void
setAct
ionId
(String
action
Id);
void
setAct
ionTy
pe
(Actio
nType
action
Type);
void
setRe
sultTy
pe
(Resul
tType

r
D
ay
s
as
pr
ov
id
ed
in
C
ha
ra
ct
eri
sti
c
T
yp

referred
from
Hold
Period
paramet
er. And
Hold
Reason
should
be set
as
provided
in
characte
ristic
type
provided
in Hold
Reason
or if that
is blank
Hold
Reason
should
be
referred
from
Hold
Reason
paramet

694 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

a
d
e
b
a
s
e
d
o
n
p
r
o
c
e
s
s
i
n
g
o
f
r
e
s
u
l
t
.

n
H
ol
d
P
eri
od
or
if
th
at
is
bl
an
k
H
ol
d
P
eri
od

22 Algorithm Extensions | 695

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

ho
ul
d
be
se
t
as
pr
ov
id
ed
in
ch
ar
ac
te
ris
tic
ty
pe
pr
ov
id
ed
in

696 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eAutoTra
nsitionAl
gorithmS
pot

T
h
i
s
a
l
g
o
ri
t
h
m

t
y
p
e
i
s
u
s
e
d
t
o
p

void
setCa
se
(ToDo
Case
toDoC
ase);
Bool
getSh
ouldA
utoTra
nsition
();
Case
Status
getNe
xtCas
eStatu
s();
String
getNe
xtTran
sCond
ition();

com.splwg.ccb.domain.collect
ion.caseType.earlyCollections
.InitiateContact

com.splwg.ccb.domain.collecti
on.caseType.earlyCollections.
InitiateContact_Impl

Tr
an
sit
io
n
to
co
nt
ac
t
st
at
e
if
Fi
rs
t
C
on
ta
ct
D
at
e
ha
s

Transitio
n to
contact
state if
First
Contact
Date
has
reached
If First
Contact
Date
has
reached
(based
on the
paramet
ers
below)
Or
Account
is Direct
Debit

22 Algorithm Extensions | 697

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
r
f
o
r
m

a
u
t
o
t
r
a
n
s
it
i
o
n
p
r
o
c
e
s
s
i
n
g

re
ac
he
d
an
d
se
t
th
e
R
e
Al
lo
ca
tio
n
S
wi
tc
h
C
as
e
T
yp
e
A
ut

and
Immedia
te
Transitio
n if
Direct
Debit =
Yes/No
Transitio
n to
Contact
RM
status if
Relation
ship
Manager
exists
and
Contact
RM
status
has
been
specifie
d
Transitio

698 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

tion
Switch =
Y for the
case
post
case
transitio
n
Possible
Values
First
Contact
Calculat
ion
Paramet
er: DPD,
DIA,
Days
Since
Case
Start
Immedia
te
Transitio
n if
Direct
Debit:
Y,N
Validatio
n Date :

22 Algorithm Extensions | 699

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eEnterSt
atusAlgor
ithmSpot

T
h
e
p
u
r
p
o
s
e
o
f
t
h
e
a
l
g
o
ri
t
h
m

void
setCa
se
(ToDo
Case
toDoC
ase)
void
setCa
seOrig
inalSt
atus
(Case
Status
caseS
tatus)
Bool
getSh
ouldA
utoTra
nsition
()
String
getNe
xtCas
eStatu
s()
String

com.splwg.ccb.domain.collect
ion.caseType.earlyCollections
.InitiateSkipTracing

com.splwg.ccb.domain.collecti
on.caseType.earlyCollections.
InitiateSkipTracing_Impl

Tr
an
sit
io
n
to
sk
ip
ta
ci
ng
st
at
us
if
no
tel
ep
ho
ne
nu
m
be
r
ex
ist

If no
contact
points
exists
then
move
the case
to Skip
Tracing
status
Check if
one of
the
Contact
Points
as
specifie
d in the
paramet
ers
exists
for any
of the
account
holder. If
no
contact

700 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

s
p
o
t
i
s
t
o
e
x
e
c
u
t
e
t
h
e
b
u
s
i
n
e
s
s
l
o

getNe
xtTran
sCond
ition()

s
fo
r
an
y
of
th
e
ac
co
un
t
ho
ld
er
C
as
e
T
yp
e -
E
nt
er
St
at
us
Al
go
C

point
exists
than
move
the case
to Skip
Tracing
Status.
Set Re-
Allocatio
n Switch
= Y for
the case
post
case
transitio
n.

22 Algorithm Extensions | 701

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

p
e
c
if
i
c
s
t
a
t
u
s
.

CaseTyp
eAutoTra
nsitionAl
gorithmS
pot

T
h
i
s
a
l
g
o
ri
t
h
m

void
setCa
se
(ToDo
Case
toDoC
ase);
Bool
getSh
ouldA
utoTra
nsition
();
Case
Status
getNe

com.splwg.ccb.domain.collect
ion.caseType.earlyCollections
.InitiateSkipTracingInvalidTel
Number

com.splwg.ccb.domain.collecti
on.caseType.earlyCollections.
InitiateSkipTracingInvalidTelN
umber_Impl

Tr
an
sit
io
n
to
sk
ip
ta
ci
ng
st
at
us

"Transiti
on to
skip
review if
'X'
number
of
consecu
tive
failed
contacts
- If last X
number

702 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

t
y
p
e
i
s
u
s
e
d
t
o
p
e
r
f
o
r
m

a
u
t
o
t
r
a
n
s

xtCas
eStatu
s();
String
getNe
xtTran
sCond
ition();

if
'X
'
nu
m
be
r
of
co
ns
ec
uti
ve
ca
ls
s
fai
ls
C
as
e
T
yp
e -
A
ut
o
Tr
an
sit

of
consecu
tive
contacts
has
been
unsucce
ssful,
transitio
n to Skip
Tracing
Status.
Logic for
consider
ing
unsucce
ssful
contact
s: If last
X
consecu
tive
contacts
with
given
contact
methods
have

22 Algorithm Extensions | 703

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

g
f
o
r
a
C
a
s
e
.

e
transitio
n
Possible
Values
for
Validatio
n Date
are
POSTIN
GDATE
and
SYSTE
MDAT
E"

CaseTyp
eAutoTra
nsitionAl
gorithmS
pot

T
h
i
s
a
l
g
o
ri
t
h

void
setCa
se
(ToDo
Case
toDoC
ase);
Bool
getSh
ouldA
utoTra
nsition
();
Case

com.splwg.ccb.domain.collect
ion.caseType.earlyCollections
.ParkSmallBalanceAccounts

com.splwg.ccb.domain.collecti
on.caseType.earlyCollections.
ParkSmallBalanceAccounts_
Impl

P
ar
k
ac
co
un
ts
wi
th
s
m
all

Park
account
s with
small
balance
s to a
separate
status
so that
no

704 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

m

t
y
p
e
i
s
u
s
e
d
t
o
p
e
r
f
o
r
m

a
u
t
o
t
r
a

Status
getNe
xtCas
eStatu
s();
String
getNe
xtTran
sCond
ition();

ba
la
nc
es
to
a
se
pa
ra
te
st
at
us
C
as
e
T
yp
e -
A
ut
o
Tr
an
sit
io
n
C
1-
E

contacts
are
initiated
for the
account
. If Net
Arrear
Amount
<=
Small
Balance
Threshol
d And
Net
Arrear
Amount
> 0 Then
transitio
n to
small
balance
status.
Net
Arrear
Amount
=
(Overdu
e

22 Algorithm Extensions | 705

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

s
s
i
n
g
f
o
r
a
C
a
s
e
.

due
Amount
instead
of Net
Arrear
Amount
in the
calculati
ons. Set
Re-
Allocatio
n Switch
= Y for
the case
post
case
transitio
n.
Possible
Values :
Use
Overdue
Amount
: Y,N

706 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

ResultTy
pePostPr
ocessing
Algorithm
Spot

T
h
i
s
A
l
g
o
ri
t
h
m

s
p
o
t
d
e
c
i
d
e
s
i
n

void
setAct
ionEnt
ity
(String
action
Entit
y);
void
setAct
ionSo
urceId
(String
action
Sourc
eId);
void
setAct
ionSo
urceSt
atusC
ode
(String
action
Sourc
eStatu
sCd);
void

com.splwg.ccb.domain.collect
ion.caseType.earlyCollections
.ResumeCollectionsPostProc
essingAlgo

com.splwg.ccb.domain.collecti
on.caseType.earlyCollections.
ResumeCollectionsPostProce
ssingAlgo_Impl

R
es
u
m
e
C
oll
ec
tio
ns
Tr
an
sit
s
th
e
ca
se
to
C
on
ta
ct
st
at
us
R
es
ult

Resume
Collecti
ons
Transitio
n the
case to
Contact
RM
Status if
RM
exists
and
Contact
RM
status
has
been
configur
ed
Contact
Alternat
e Status
If
Contact
Alternat
e Flag =
Y Else
Contact
Status
Set Re-

22 Algorithm Extensions | 707

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

w
h
i
c
h
s
t
a
t
u
s
t
r
a
n
s
it
i
o
n
h
a
s
t
o
b
e
m

setAct
ionId
(String
action
Id);
void
setAct
ionTy
pe
(Actio
nType
action
Type);
void
setRe
sultTy
pe
(Resul
tType
result
Type);
boolea
n
getIsP
roces
singC
omple
te();

T
yp
e
P
os
t
Pr
oc
es
si
ng
Al
go
C
1-
R
E
S
C
O
LL

Allocatio
n Switch
= Yes if
Re-
Allocate
= Y Re-
Allocate
can be
Y/N

708 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

l
t
.

CaseTyp
eAutoTra
nsitionAl
gorithmS
pot

T
h
i
s
a
l
g
o
ri
t
h
m

t
y
p
e
i
s
u
s
e
d
t

void
setCa
se
(ToDo
Case
toDoC
ase);
Bool
getSh
ouldA
utoTra
nsition
();
Case
Status
getNe
xtCas
eStatu
s();
String
getNe
xtTran
sCond
ition();

com.splwg.ccb.domain.collect
ion.caseType.earlyCollections
.ResumeContactFromUnderR
esolution

com.splwg.ccb.domain.collecti
on.caseType.earlyCollections.
ResumeContactFromUnderRe
solution_Impl

R
es
u
m
e
C
on
ta
ct
Fr
o
m
U
nd
er
R
es
ol
uti
on
St
at

Resume
Contact
From
Under
Resoluti
on
Status: -
If there
is no
more
active
PTP on
the
account
and - If
the Net
Arrear
Amount
> 0 Than
transitio
n the
case to

22 Algorithm Extensions | 709

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

o
p
e
r
f
o
r
m

a
u
t
o
t
r
a
n
s
it
i
o
n
p
r
o
c
e
s
s
i

us
M
ov
e
ca
se
to
co
nt
ac
t
st
at
us
if
th
e
N
et
Ar
re
ar
A
m
ou
nt
is
gr

Contact
RM
Status if
RM
exists
and
Contact
RM
status
has
been
configur
ed
Contact
Alternat
e Status
If
Contact
Alternat
e Flag =
Y Else
Contact
Status
Set Re-
Allocatio
n Switch
= Y for
the case

710 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

on
C
1-
E
C
R
C
F
U
R

nt -
Unclear
Amount)
Use
Overdue
Amount
can be
Y/N or
Yes/No

CaseTyp
eAutoTra
nsitionAl
gorithmS
pot

T
h
i
s
a
l
g
o
ri
t
h
m

t
y
p

void
setCa
se
(ToDo
Case
toDoC
ase);
Bool
getSh
ouldA
utoTra
nsition
();
Case
Status
getNe
xtCas
eStatu
s();

com.splwg.ccb.domain.collect
ion.caseType.earlyCollections
.ResumeContactfromSmallBal
ance

com.splwg.ccb.domain.collecti
on.caseType.earlyCollections.
ResumeContactfromSmallBal
ance_Impl

T
hi
s
al
go
rit
h
m
is
us
ed
to
re
su
m
e
co

This
algorith
m is
used to
resume
contact
from
small
balance
status. If
Net
Arrear
Amount
> Small
Balance

22 Algorithm Extensions | 711

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
i
s
u
s
e
d
t
o
p
e
r
f
o
r
m

a
u
t
o
t
r
a
n
s
it
i
o

String
getNe
xtTran
sCond
ition();

nt
ac
t
fr
o
m
s
m
all
ba
la
nc
e
st
at
u
s.
C
as
e
T
yp
e -
A
ut
o
Tr
an
sit
io

Threshol
d Then
transitio
n the
case to
Contact
RM
Status if
RM
exists
and
Contact
RM
status
has
been
configur
ed
Contact
Alternat
e Status
If
Contact
Alternat
e Flag =
Y Else
Contact
Status

712 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

C
a
s
e
.

ue
Amount
instead
of Net
Arrear
Amount
in the
calculati
ons. Net
Arrear
Amount
=
(Overdu
e
Amount
-
Unclear
Amount)
Possible
Value:
Overdue
Amount
: Y,N

CaseTyp
eAutoTra
nsitionAl
gorithmS
pot

T
h

void
setCa
se
(ToDo
Case

com.splwg.ccb.domain.collect
ion.caseType.earlyCollections
.ScheduleContact

com.splwg.ccb.domain.collecti
on.caseType.earlyCollections.
ScheduleContact_Impl

T
hi
s

Schedul

22 Algorithm Extensions | 713

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
s
a
l
g
o
ri
t
h
m

t
y
p
e
i
s
u
s
e
d
t
o
p
e
r
f
o

toDoC
ase);
Bool
getSh
ouldA
utoTra
nsition
();
Case
Status
getNe
xtCas
eStatu
s();
String
getNe
xtTran
sCond
ition();

al
go
rit
h
m
wi
ll
S
ch
ed
ul
e
C
on
ta
ct
fo
r
th
e
ca
se
as
pe
r
th
e
gi
ve

e
Contact
for the
case as
per
intensit
y: - If
case is
not on
Hold. -
And
Display
Date <=
Busines
s Date
or
Display
Date is
Blank. -
Set
Display
Date =
Max
((Last
Succes
sful
Contact

714 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

a
u
t
o
t
r
a
n
s
it
i
o
n
p
r
o
c
e
s
s
i
n
g
f
o
r
a
C
a

en
sit
y
C
as
e
T
yp
e -
A
ut
o
Tr
an
sit
io
n
C
1-
E
C
S
C

Contact
Intensit
y),
Busines
s Date)
Conside
r
Contact
Intensity
from
Algorith
m
paramet
er if
specifie
d else
picks up
Contact
Intensity
from
case
level
field.
Logic for
consider
ing
success
ful
contact

22 Algorithm Extensions | 715

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

ResultTy
pePostPr
ocessing
Algorithm
Spot

T
h
i
s
A
l
g
o
ri
t
h
m

s
p
o
t
d
e
c
i
d
e
s

void
setAct
ionEnt
ity
(String
action
Entit
y);
void
setAct
ionSo
urceId
(String
action
Sourc
eId);
void
setAct
ionSo
urceSt
atusC
ode
(String
action
Sourc
eStatu

com.splwg.ccb.domain.collect
ion.caseType.earlyCollections
.SupervisorReferralPostProce
ssingAlgo

com.splwg.ccb.domain.collecti
on.caseType.earlyCollections.
SupervisorReferralPostProces
singAlgo_Impl

T
hi
s
al
go
rit
h
m
wi
ll
tr
an
sf
er
th
e
ca
se
to
th
e
gi
ve
n

Supervi
sor
Referral
Algorith
m: - If
case is
present
in one of
the
status's
specifie
d in
'Valid
Current
Status'
than
Proceed
with
further
actions
Else
Display
an error
'The

716 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

i
n
w
h
i
c
h
s
t
a
t
u
s
t
r
a
n
s
it
i
o
n
h
a
s
t
o
b

sCd);
void
setAct
ionId
(String
action
Id);
void
setAct
ionTy
pe
(Actio
nType
action
Type);
void
setRe
sultTy
pe
(Resul
tType
result
Type);
boolea
n
getIsP
roces
singC
omple
te();

st
at
us
if
th
e
cu
rr
en
t
st
au
s
of
th
e
ca
se
is
pr
es
en
t
in
V
ali
d
C

selected
result
<Result
Type> is
not
allowed
in
current
Status.'
And
don't
proceed
with
further
actions.
-
Transitio
n the
case to
given
Case
Status. -
Create
Task of
given
Task
Type
and

22 Algorithm Extensions | 717

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

f
r
e
s
u
l
t
.

C
1-
E
C
R
T
S

n Switch
= Y if
Re-
Allocate
= Y Re-
Allocate
can be
Y/N

CaseTyp
eAutoTra
nsitionAl
gorithmS
pot

T
h
i
s
a
l
g
o
ri
t
h
m

t
y
p
e
i

void
setCa
se
(ToDo
Case
toDoC
ase);
Bool
getSh
ouldA
utoTra
nsition
();
Case
Status
getNe
xtCas
eStatu
s();
String
getNe

com.splwg.ccb.domain.collect
ion.caseType.earlyCollections
.TransitionToSuspendedStatu
s

com.splwg.ccb.domain.collecti
on.caseType.earlyCollections.
TransitionToSuspendedStatu
s_Impl

Tr
an
sit
io
n
to
su
sp
en
de
d
st
at
us
if
th
e
ac
co

If the
Account
has one
of the
Account
Risk
Indicator
s
specifie
d in the
paramet

718 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

s
u
s
e
d
t
o
p
e
r
f
o
r
m

a
u
t
o
t
r
a
n
s
it
i
o
n
p

xtTran
sCond
ition();

un
t
ha
s
on
e
of
th
e
w
ar
ni
ng
in
di
ca
to
r
se
t
C
as
e
T
yp
e -
A
ut
o

er
Transitio
n to
Suspen
ded
status.
Create a
task if
Task
Type
has
been
mention
ed and
assign it
to the
Specifie
d Queue
Set Re-
Allocatio
n Switch

22 Algorithm Extensions | 719

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

t. If
either of
the
financial
owners
have
one of
the
Party
Indicator
s
mention
ed in the
paramet
er than
transitio
nto
Suspen
ded
status.
Create a
task if
Task

720 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

te' than
transitio
n the
case to
the
Contact
Alternat
e
Status.
If case
already
in
Contact
Alternat
e Status
don't
initiate
the
transitio
n but
perform
the other
activitie
s.
Create a
task if
Task
Type

22 Algorithm Extensions | 721

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eAutoTra
nsitionAl
gorithmS
pot

T
h
i
s
a
l
g
o
ri
t
h
m

t
y
p
e
i
s
u
s
e
d
t
o
p

void
setCa
se
(ToDo
Case
toDoC
ase);
Bool
getSh
ouldA
utoTra
nsition
();
Case
Status
getNe
xtCas
eStatu
s();
String
getNe
xtTran
sCond
ition();

com.splwg.ccb.domain.collect
ion.caseType.earlyCollections
.TransitionToUnderResolution
Status

com.splwg.ccb.domain.collecti
on.caseType.earlyCollections.
TransitionToUnderResolutionS
tatus_Impl

Tr
an
sit
io
n
to
un
de
r
re
so
lut
io
n
st
at
us
if
N
et
Ar
re
ar
A
m
ou
nt

Transitio
n to
under
resolutio
n status
if Net
Arrear
Amount
<=0. -
Transitio
n the
case to
Under
Resoluti
on
Status if
Net
Arrear
Amount
<= 0 or
PTP is
running
on the
account.
- Set Re-
Allocatio

722 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
r
f
o
r
m

a
u
t
o
t
r
a
n
s
it
i
o
n
p
r
o
c
e
s
s
i
n
g

<
=
0
C
as
e
T
yp
e -
A
ut
o
Tr
an
sit
io
n
C
1-
E
C
T
T
U
R
S

n Switch
= Y for
the case
post
case
transitio
n Net
Arrear
Amount
=
(Overdu
e
Amount
-
Unclear
Amount)
If Use
Overdue
Amount
= Yes
than use
Overdue
Amount
instead
of Net
Arrear
Amount
in the
calculati
ons.

22 Algorithm Extensions | 723

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

CaseTyp
eAutoTra
nsitionAl
gorithmS
pot

T
h
i
s
a
l
g
o
ri
t
h
m

t
y
p
e
i
s
u
s
e
d
t
o
p

void
setCa
se
(ToDo
Case
toDoC
ase);
Bool
getSh
ouldA
utoTra
nsition
();
Case
Status
getNe
xtCas
eStatu
s();
String
getNe
xtTran
sCond
ition();

com.splwg.ccb.domain.collect
ion.caseType.earlyCollections
.ValidateContactCap

com.splwg.ccb.domain.collecti
on.caseType.earlyCollections.
ValidateContactCap_Impl

T
he
al
go
rit
h
m
wi
ll
ho
ld
th
e
ca
se
w
he
n
th
e
co
nt
ac
t
ca
p
is

Check if
the
contact
cap has
reached
for the
case If
case is
not
already
on Hold
and
Display
Date <=
Busines
s Date
And the
number
of
success
ful
contacts
linked to
the case
in last X
number

724 | Oracle Banking Platform Host Extensibility Guide

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

e
r
f
o
r
m

a
u
t
o
t
r
a
n
s
it
i
o
n
p
r
o
c
e
s
s
i
n
g

re
ac
he
d
C
as
e
T
yp
e -
A
ut
o
Tr
an
sit
io
n
C
1-
E
C
V
C
C

of days
>=
Contact
Cap
Hold the
case for
Y
number
of days
with the
given
Hold
Reaso
n.. Logic
for
consider
ing
success
ful
contact
s: All
contacts
with
given
contact
methods
that
have
Authenti

22 Algorithm Extensions | 725

22.4 List of Algorithm Spots

Algorith
m Spot

S
p
o
t
D
e
t
a
i
l

Spot
Interf
ace
Funti
ons

Collections Algorithm
Component Collections Algorithm Impl

C
ol
le
ct
io
n
s
Al
g
or
it
h
m
D
es
cr
ip
ti
o
n
a
n
d
C
o
d
e

Algorit
hm
Summa
ry

726 | Oracle Banking Platform Host Extensibility Guide

	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 About This Guide
	1.1 Sections Not Applicable for Oracle Banking Enterprise Product Manufacturing
	1.2 Sections Applicable Only for Oracle Banking Enterprise Collections

	2 Objective and Scope
	2.1 Overview
	2.2 Objective and Scope
	2.2.1 Extensibility Objective
	2.2.2 Document Scope

	2.3 Complementary Artefacts
	2.4 Out of Scope

	3 Overview of Use Cases
	3.1 Extensibility Use Cases
	3.1.1 Extending Service Execution
	3.1.2 OBP Application Adapters
	3.1.3 Extending Business Policy
	3.1.4 User Defined Fields
	3.1.5 Batch Framework Extension
	3.1.6 Uploaded File Processing
	3.1.7 Alert Extension
	3.1.8 Create New Reports
	3.1.9 Security Customization
	3.1.10 Loan Schedule Computation Algorithm
	3.1.11 Facts and Business Rules
	3.1.12 Composite Application Service
	3.1.13 ID Generation
	3.1.14 OCH Integration

	4 Extending Service Executions
	4.1 Service Extension – Extending the app Layer
	4.1.1 Application Service Extension Interface
	4.1.2 Default Application Service Extension
	4.1.3 Application Service Extension Executor
	4.1.4 Extension Configuration
	4.1.5 Application Service Extension Using Groovy

	4.2 Extended Application Service Extension – Extending the appx Layer
	4.2.1 Extended Application Service Extension Interface
	4.2.2 Default Implementation of Appx Extension
	4.2.3 Configuration
	4.2.4 Extended Application Service Extension Executor
	4.2.5 Application Service appx Extension using Groovy

	4.3 End-to-End Example of an Extension
	4.4 Support for Middleware Specific Tasks and Application service
	4.4.1 Pre and Post Middleware Specific Transaction Tasks Overview
	4.4.2 Sample Configuration
	4.4.3 Custom Application Service

	5 OBP Proxy Extension
	6 OBP Application Adapters
	6.1 Adapter Implementation Architecture
	6.1.1 Package Diagram
	6.1.2 Adapter Mechanism Class Diagram
	6.1.3 Adapter Mechanism Sequence Diagram

	6.2 Examples of Adapter Implementation
	6.2.1 Example 1 – EventProcessingAdapter
	6.2.2 Example 2 – DispatchAdapter
	6.2.3 Example 3 - Adapter Implementation Using Groovy

	6.3 Customizing Existing Adapters
	6.3.1 Custom Adapter Example 1 – DispatchAdapter
	6.3.2 Custom Adapter Example 2 – PartyKYCCheckAdapter

	7 Business Policy Extension
	7.1 Base Implementation of Business Policy
	7.2 Extending Business Policy
	7.3 Configuration
	7.4 Extensions Using Groovy

	8 OBP Extensibility Support Using Eclipse Plugin
	8.1 Configure Eclipse Preferences for OBP Service Plugin
	8.2 Support for Application Service Provider Extension
	8.2.1 Generate Application Service Provider Extension
	8.2.2 Configure OBP Extensibility Server Explorer - View
	8.2.3 Exposed Webservice for Application Service SPI Extensions
	8.2.4 Deploy Application Service SPI to Server
	8.2.5 Database Inserts: Application Service SPI Extension Deployment
	8.2.6 Fetching Deployed Application Service SPI Extension
	8.2.7 Undeploying Application Service SPI Extension
	8.2.8 Case of Multiple Application Service SPI Extensions
	8.2.9 Inclusion of Groovy Extension in Actual Code Flow

	8.3 Support for Business Policy Extension
	8.3.1 Generate Business Policy Extension
	8.3.2 Exposed Webservice for Business Policy Extensions
	8.3.3 Deploy Business Policy Extension to Server
	8.3.4 Database Inserts: Business Policy Extension Deployment
	8.3.5 Fetching Deployed Business Policy Extension
	8.3.6 Undeploying Business Policy Extension from Server
	8.3.7 Inclusion of Groovy Extension in Actual Code Flow

	8.4 Support for Adapter Extension
	8.4.1 Generate Adapter Extension
	8.4.2 Exposed Webservice for Adapter Extensions
	8.4.3 Deploy Adapter Extension to Server
	8.4.4 Database Inserts: Adapter Extension Deployment
	8.4.5 Fetching Deployed Adapter Extension
	8.4.6 Undeploying Adapter Extension from Server
	8.4.7 Inclusion of Groovy Extension in Actual Code Flow

	9 Batch Framework Extensions
	9.1 Typical Business Day in OBP
	9.2 Overview of Categories
	9.2.1 Beginning of Day (BOD)
	9.2.2 Cut-off
	9.2.3 End of Day (EOD)
	9.2.4 Internal EOD
	9.2.5 Statement Generation
	9.2.6 Customer Communication

	9.3 Batch Framework Architecture
	9.3.1 Static View
	9.3.2 Dynamic View

	9.4 Batch Framework Components
	9.4.1 Category Components
	9.4.2 Shell Components
	9.4.3 Stream Components
	9.4.4 Database Components

	9.5 Batch Configuration
	9.5.1 Creation of New Category
	9.5.2 Creation of Bean Based Shell
	9.5.3 Creation of Procedure Based Shell
	9.5.4 Population of Other Parameters

	9.6 Batch Execution

	10 Uploaded File Data Processing
	10.1 Configuration
	10.1.1 Database Tables and Setup
	10.1.2 File Handlers
	10.1.3 Record Handlers for Both Header and Details
	10.1.4 DTO and Keys Classes for Both Header and Details
	10.1.5 XFF File Definition XML

	10.2 Processing
	10.2.1 API Calls in the Handlers
	10.2.2 Processing Adapter

	10.3 Outcome
	10.4 Failure/Exception Handling

	11 Alerts Extension
	11.1 Transaction as an Activity
	11.1.1 Activity Record
	11.1.2 Attaching Events to Activity
	11.1.3 Event Record
	11.1.4 Activity Event Mapping Record
	11.1.5 Activity Log DTO
	11.1.6 Alert Metadata Generation
	11.1.7 Alert Message Template Maintenance
	11.1.8 Alert Maintenance

	11.2 Alert Subscription
	11.2.1 Transaction API Changes

	11.3 Alert Processing Steps
	11.4 Alert Dispatch Mechanism
	11.5 Adding New Alerts
	11.5.1 New Alert Example
	11.5.2 Testing New Alert

	11.6 Support For Derived Facts

	12 Creating New Reports
	12.1 Data Objects for the Report
	12.2 Catalog Folder
	12.3 Data Source
	12.4 Data Model
	12.5 XML View of Report
	12.6 Layout of the Report
	12.7 View Report in BIP
	12.8 OBP Batch Report Configuration - Define the Batch Reports
	12.9 OBP Batch Report Configuration - Define the Batch Report Shell
	12.10 OBP Batch Report Configuration - Define the Batch Report Shell Dependencies
	12.11 OBP Batch Report Configuration
	12.11.1 Batch Report Generation for a Branch Group Code
	12.11.2 Batch Report Generation Status
	12.11.3 Batch Report Generation Path

	12.12 OBP Adhoc Report Configuration
	12.12.1 Define the Adhoc Reports
	12.12.2 Define the Adhoc Report Parameters
	12.12.3 Define the Adhoc Reports to be listed in Screen
	12.12.4 Adding Screen Tab for Report Module

	12.13 Adhoc Report Generation – Screen 7775
	12.14 Adhoc Report Viewing – Screen 7779

	13 Security Customizations
	13.1 OPSS Access Policies – Adding Attributes
	13.1.1 Steps

	13.2 OAAM Fraud Assertions – Adding Attributes
	13.2.1 Steps

	13.3 Matrix Based Approvals – Adding Attributes
	13.4 Security Validators
	13.4.1 Customer Validators
	13.4.2 Account Validators
	13.4.3 Business Unit Validators

	13.5 Customizing User Search
	13.5.1 Steps

	13.6 Customizing One-Time-Password (OTP) Processing Logic
	13.6.1 Steps

	13.7 Customizing Role Evaluation
	13.7.1 Steps

	13.8 Customizing Limits Exclusions
	13.8.1 Steps

	13.9 Customizing Business Rules
	13.9.1 Steps to Update the Business Rules by Browser
	13.9.2 Steps to Update the Business Rules in JDeveloper

	14 Loan Schedule Computation Algorithm
	14.1 Adding a New Algorithm
	14.2 Consuming Third Party Schedules

	15 Facts and Rules Configuration
	15.1 Facts
	15.1.1 Type of Facts
	15.1.2 Facts Vocabulary
	15.1.3 Generation of Facts using Eclipse Plug-in
	15.1.4 Object Facts

	15.2 Business Rules
	15.2.1 Rules Engine
	15.2.2 Rules Creation by Guided Rule Editor
	15.2.3 Rules Creation By Decision Table
	15.2.4 Rules Storage
	15.2.5 Rules Deployment
	15.2.6 Rules Versioning

	15.3 Rules Configuration in Modules
	15.3.1 Generic Rules Configuration

	15.4 Rules Migration
	15.4.1 Rules Configured for Modules

	16 Composite Application Service
	16.1 Composite Application Service Architecture
	16.2 Multiple APIs in Single Module

	17 ID Generation
	17.1 Database Setup
	17.1.1 Database Configuration

	17.2 Automated ID Generation
	17.3 Custom ID Generation

	18 Extensibility of Domain Objects using Flex Fields
	18.1 Flex Field - Provisioning details
	18.2 Flex Field - Fact support
	18.3 Flex Field – Validation Support
	18.4 Flex Field – Usage Instructions

	19 Extensibility of Domain Objects - Dictionary Pattern
	19.1 Customized Domain Object Attribute Placeholders
	19.2 Customized Domain Object DTO Interceptor in UI Layer
	19.2.1 Interceptor Hook to Persist Customized Domain Object Attributes
	19.2.2 Interceptor Hook to Fetch Customized Domain Object Attributes

	19.3 Dictionary Data Transfer from UI to Host
	19.3.1 Customized Domain Object DTO Transfer from UI to Host
	19.3.2 Customized Domain Object DTO transfer from Host to UI

	19.4 Translating Dictionary Data into Custom Domain Object
	19.4.1 Instantiation and Persistence of Custom Domain Objects
	19.4.2 Fetching of Customized Domain Objects
	19.4.3 Defining of Customized Domain Objects

	19.5 Customized Domain Object ORM Configuration
	19.5.1 Case 1 - Non-Inheritance based mapping
	19.5.2 Case 2 - Mapped as ORM Subclass
	19.5.3 Case 3 - Mapped as ORM Union-Subclass or Joined-Subclass
	19.5.4 Case 4 - Mapped as ORM Component

	19.6 Extensibility using Dictionary in Origination Application
	19.6.1 ICustomDataHandler's as DictionaryArray Interceptor
	19.6.2 Create Customized Abstract Domain Object Class
	19.6.3 Create Customized Abstract Domain Object ORM Mapping File
	19.6.4 Create Customized Abstract Domain Object Attribute Columns

	19.7 Extensibility using Attributes of Various Supported Datatypes
	19.8 Customized Domain Object having Collection of Objects as Attributes
	19.9 Limitation to Extensibility using Dictionary Pattern

	20 Deployment Guideline
	20.1 Customized Project Jars
	20.2 Database Objects
	20.3 Extensibility Deployment

	21 OCH Integration
	21.1 Integration Adapter Interface
	21.2 Abstract Integration Adapter Class
	21.3 Sample Integration Adapter
	21.4 Integration Abstract Assembler
	21.5 Sample Assembler

	22 Algorithm Extensions
	22.1 Overview
	22.2 Algorithm Spots
	22.3 Algorithm Components
	22.4 List of Algorithm Spots

